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We present an algorithm for numerically integrating non-autonomous Hamiltonian
differential equations. Special attention is paid to the separable case and, in particular,
a new fourth-order splitting method is presented which in a certain measure is optimal.
In combination with a new way of handling non-autonomous problems, the schemes
we present are based on Magnus expansions and they show very promising results
when applied to Hamiltonian ODEs and PDEs.c© 2001 Academic Press
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1. INTRODUCTION

Geometric integration(GI) of differential equations has been a research area spinning
off many useful results in the past decade. The focus of GI is the construction of numerical
methods that retain algebraic and differential algebraic structures. By doing so in a natural
way it leads to improved numerical accuracy. Maybe most importantly, structures that are
stable under perturbations lend themselves to backward error analysis results which can be
used to predict and analyse error growth of numerical methods [27]. Hamiltonian systems
whose phase spaces possess a symplectic structure are maybe the most important of such
systems. Special symplectic integrators retaining this structure have been constructed, and
the most successful integrators of this type aresplitting methods. Since the pioneering
papers of Ruth [26], Candy and Rozmus [8], Suzuki [28], and Yoshida [30], a large number
of methods have appeared [17, 19, 27]. This new family of methods have been successfully
applied in celestial mechanics [29], plasma simulations [9], quantum mechanics [13, 16],
etc. Essentially, the methods work by splitting the vector field defining the differential
equation into a sum whose terms are exactly integrable, and they are thus of quite a general
nature.
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In this paper we present new numerical methods for solving nonlinear differential equa-
tions

dx
dt
= f(x, t), x0 = x(t0) ∈ Rn, (1)

with f ∈ Rn × R→ Rn (henceforth,t0 = 0). In the linear case,f(x, t) = A(t)x, the Magnus
expansion [21] represents the solution as an exponential,x(t) = exp(Ä(t))x(0). This ex-
pansion has been successfully used for obtaining efficient numerical methods [5, 14, 22]
both because it preserves the structure of the exact solution and because of the special
treatment of the time-dependent part. In the nonlinear case, the time-dependent part of
f(x, t) plays an important role in many problems. In this case it is important to have numer-
ical methods which can take special care of the time-dependent part while preserving the
qualitative properties of the exact solution. The simplest and most used trick for avoiding
the time-dependent functions is to considert as a new coordinate,xt , thus increasing the
dimension of the phase space, whereupon one solves the transformed equation

dy
dt
= F(y), (2)

with a standard algorithm, wherey = (x, xt ) andF(y)= (f(y), 1). In many cases this trans-
formation is not very efficient for numerically solving the problem. Examples of problems
where this could be the case are as follows:

• If the explicit time dependency off has a relatively short time scale, then the main
contribution to the error will originate from it. By explicitly handling the time dependency
specialised quadratures, or even exact integrals, can be applied.
• If the time-dependent functions appearing inf are expensive to evaluate, the methods

for solving (2) will in general be expensive since they do not attempt to minimise the number
of time evaluations.
• There are many numerical methods which are especially efficient for solving (1)

if f is time independent and has some special structure. In (2) the time dependency is
eliminated, but the structure of the equation can be destroyed, and one has to resort to
more general and less efficient methods. This is the case, for example, if one considers
the HamiltonianH(q, p, t) = pT M(t)p+ V(q, t). Runge–Kutta–Nystr¨om (RKN) meth-
ods for Hamiltonians with quadratic kinetic energy cannot be used after the introduction of
the new coordinates associated to the time and its momentum, as we will see later in more
detail.

To avoid these problems, we present numerical methods based on the Magnus series. Over
one time step,h, the Magnus approximation can be considered a time-averaging method,
where as an example the standard averaging of (1) gives

dx̂
dt
= f̂(x̂), x(0) = x(0),

with f̂(x̂) = 1
h

∫ h
0 f(x̂, s) ds. This is an approximation that in turn leads to a second-order

approximation to the solution̂x(h) = x(h)+ O(h3). As we will see, this corresponds to
truncating the Magnus series after the first term.
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This paper contains two main parts:

1. First, we generalise the Magnus expansion to non-linear systems. In general, methods
which are direct applications of the Magnus expansion are difficult to implement or are
very expensive to run. Motivated by these facts we show how to write this exponential as a
product of exponentials, which are much easier to compute. In particular, we present two
fourth-order factorisations of the Magnus expansion.

2. Frequently the vector field takes the formf = f A + fB, with f A andfB exactly solvable.
In this case, usually each term in the Magnus factorisation will correspond to the flow
associated to a sum of two exactly solvable vector fields. Thus, it is interesting to implement
the Magnus factorisation with fourth-order splitting methods, such as

exp(h(X + Y)) =
m∏

i=1

exp(hai X) exp(hbi Y)+ O(h5), (3)

where X and Y are two operators which do not commute. This family of methods are
usually referred to as partitioned Runge–Kutta (PRK) methods [27]. To get an efficient
implementation, we made a search for good fourth-order splitting methods and found a
novel splitting method optimised for the second-order problemd2x

dt2 = g(x, t). This method
also showed very favourable performance for other structures on the vector fieldsf A andfB.

This paper is organised as follows. Section 2 contains a short review of the Magnus series
for linear systems and how it can be used to construct numerical methods for such systems.
Next, we take the formalism of linear systems a step further and use the Magnus series as
a representation of the solution of non-linear non-autonomous ODEs. Section 3 introduces
a factorisation of the Magnus series derived from the Baker–Campbell–Hausdorff formula,
which removes the otherwise cumbersome commutators. We prove that the new methods
are time symmetric and present an error analysis. To implement the new methods when the
vector field is separable into two solvable parts, Section 4 introduces splitting methods for
nonautonomous separable systems. That section also summarises the known fourth-order
methods from the literature. In addition, a new method that has been specially optimised
is presented. Section 5 contains a set of numerical experiments showing the efficacy of the
proposed schemes versus other well-known symplectic integrators found in the literature.

2. MAGNUS SERIES FOR NON-AUTONOMOUS SYSTEMS

2.1. Linear Systems

Let us start with the linear systems

dx
dt
= A(t)x, x(0) = x0, (4)

with A(t) ∈ Rn×n. One popular perturbative method for solving (4), while preserving the
qualitative properties of the exact solution, can be obtained through the Magnus expansion
[21]. Magnus assumed that the solution can be written in the form

x(t) = exp(Ä(t))x0, (5)
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with Ä =∑∞i=1Äi . The first two terms are given by

Ä1(t) =
∫ t

0
A(s1) ds1, Ä2(t)− 1

2

∫ t

0
ds1

∫ s1

0
ds2[ A(s1), A(s2)], (6)

with [ A, B] = AB− B A. The Magnus expansion has been used mainly in quantum me-
chanics as an analytical approximation to the solution (see [2] and references therein) be-
cause it preserves the unitarity of the propagator (ifA is skew-Hermitian). Recently, it has
been used as a basis for efficient numerical integrators [5, 14, 22] because the approximate
solution is restricted to the same space as the exact flow, retaining the geometric properties
of the exact solutions. Provided thatA(t) is a bounded matrix, the series is absolutely con-
vergent for a sufficiently smallt [2, 23] and accurate approximations can be expected for
sucht ; even a moderate number of terms give very accurate approximations. In this case, the
Magnus series is a good candidate for constructing numerical methods. The main problem
with the series is the evaluation of multidimensional intergrals. It is, however, possible to
evaluate all multidimensional integrals using standard unidimensional quadratures derived
from collocation principles [14]. For example, using a Gauss–Legendre quadrature with
n points (n evaluations ofA(t) per step), it is possible to obtain a numerical method of
order 2n in the time step. In order to improve the efficiency and to simplify the methods,
the Magnus series is written in terms of unidimensional integrals so that the application of
quadrature becomes even more transparent [5].

Let us denote byZ(i )(h), i = 0, 1, the unidimensional integrals associated withZ(t),

Z(0)(h) =
∫ h

0
Z(s) ds, Z(1)(h) = 1

h

∫ h/2

−h/2
sZ(s+ h/2) ds, (7)

whereZ(t) is a function, a vector, or a matrix, depending on the circumstance. The integrals
can be approximated using a numerical quadrature to obtain a computational algorithm. Let
us, as an example, consider the fourth-order Gaussian quadrature for solving (7); then

Z(0) = h

2
(Z1+ Z2)+ O(h5), Z(1) =

√
3h

12
(Z2− Z1)+ O(h5), (8)

whereZi = Z(ci h), i = 1, 2, andc1,2 = 1/2∓√3/6.
When the system is integrated over one time steph, two fourth-order approximations to

Ä(h) are given by

Ä(h) = Ä1(h)+Ä2(h)+ O(h5) (9)

= A(0) + [A(1), A(0)
]+ O(h5). (10)

Higher order methods in terms of unidimensional integrals or Gaussian quadratures can
be found in [5, 22].

2.2. Nonlinear Systems

First, we consider the autonomous system

dx
dt
= f(x), x0 = x(0) (11)
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and denote its flow byx(t) = 8t
f x0. Given a smooth functionψ : Rn→ R, the derivative

in the direction off is a new function, whose value atx0 is

(L fψ)(x0) = d

dt

∣∣∣∣
t=0

ψ
(
8t

f x
)

= f1(x)
∂ψ

∂x1
+ · · · + fn(x)

∂ψ

∂xn

∣∣∣∣
x=x0

, (12)

with x = (x1, . . . , xn) andf = ( f1, . . . , fn) (see [1, Chap. 8] for more details). We can then
write the differential operatorL f as

L f =
n∑

i=1

fi
∂

∂xi
. (13)

L f is usually called the Lie derivative (or operator)1 associated withf. Given two functions
ψ1 andψ2, it is easy to prove the properties

L f(α1ψ1+ α2ψ2) = α1L fψ1+ α2L fψ2, α1, α3 ∈ R, (14)

L f(ψ1ψ2) = ψ1L fψ2,+ψ2L fψ1, (15)

and by induction we can prove Leibniz’s formula

Lk
f (ψ1ψ2) =

k∑
i=0

(
k
i

)(
Li

fψ1
)(

Lk−i
f ψ2

)
, (16)

with Li
fψ = L f(L

i−1
f ψ) and L0

fψ = ψ , justifying the name Lie derivative. In addition,
given vector fieldsf andg,

α1L f + α2Lg = Lα1f+α2g,
(17)

[L f, Lg] = L f Lg− LgL f = Lh,

whereh is another vector field corresponding to the Lie bracket of the vector fields,h =
(f, g), whose components are

hi = (f, g)i = L fgi − Lg fi =
n∑

j=1

(
f j
∂gi

∂xj
− gj

∂ fi
∂xj

)
. (18)

Using Lie derivatives, we can write (11) as

dx
dt
= L f(x)x, (19)

1 Some authors refer toL f as the Liouville operator, after the transformation of nonlinear ODEs to a linear PDE
carrying the same name.
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whereL f acts on each component ofx (remembering thatL f acts on functions). With this
notation in place, the flow can formally be written as

8t
f x = exp(t L f)x =

( ∞∑
k=0

tk

k!
Lk

f

)
x, (20)

where exp(t L f) is the Lie transform associated withf. Again exp(t L f) acts on each compo-
nent ofx. Given an analytic functionψ and taking into account (14) and (16), it is easy to
prove the following important property for Lie transforms:

exp(t L f)ψ(x) = ψ(exp(t L f)x). (21)

Therefore, the composition of two flows can be rewritten in terms of Lie transforms as

8t
f8

s
gψ(x) = ψ(exp(sLg) exp(t L f)x). (22)

Observe that the order of the Lie transforms has been reversed so that the calculations have
to be done from left to right. A Lie transform can be considered as a transform of coordinates
from x0 to xt = exp(t L f(x0))x0. One can see that exp(t L f(x0)) similarly to L f(x0), operates on
functions ofx0. It propagates forward in time according to the vector fieldf(x0) [12]. This
point of view has been central in accelerator physics and optics, mainly since the paper of
Dragt [11], where the notation:f : is used for the Lie derivativeL f . Similarly, in Hamiltonian
perturbation theory, such representations of coordinate transforms have been very fruitful.

Let us consider now the non-autonomous equation

dx
dt
= f(x, t). (23)

The flowx(t) = 8t
f x0 can locally be considered a Lie transform acting on initial conditions,

so property (21) is valid for8t
f . Thusf(x, t) = f(8t

f x0, t) = 8t
f f(x0, t) and Eq. (23) can be

written as

d

dt
8t

f x0 = 8t
f L f(x0,t)x0; (24)

thus,

d

dt
8t

f = 8t
f L f(x0,t). (25)

Now, Magnus’s expansion can be used to obtain an approximate solution for8t
f . If we

consider8t
f = exp(Lw(x0,t)), with w =∑i wi , we obtain for the first two terms (taking into

account (17) and that the position ofL f is on the right side)

w1(x0, t) =
∫ t

0
f(x0, s) ds, w2(x0, t) = −1

2

∫ t

0
ds1

∫ s1

0
ds2(f(x0, s1), f(x0, s2)). (26)

Observe that the sign ofw2 is changed when compared withÄ2 in (6). Thus, for a time step
t = h we have
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THEOREM2.1. Givenw1,w2, f (0), andf (1) defined according to(26) and(7) and for a
time step t= h, the following are fourth-order approximations to the exact solution of(25):

8h
f = exp(Lw) = exp

(
Lw1+w2

)+ O(h5) (27)

= exp
(
L f(0)+(f(0),f(1))

)+ O(h5). (28)

Proof. This is similar to the proof in [2, 14]. Let us consider the Taylor expansion int
of f(x0, t),

f(x0, t) = f0+ t f1+ t2f2+ t3f3+ · · · , (29)

with

f i = 1

i !

∂ i

∂t i
f(x, t)

∣∣∣∣
t=0,x=x0

.

Substituting the expansion into the integrals, with a little of algebra, and taking into
account that the expressions are time symmetric, we find thatw2i = O(h2i+1) andw2i+1 =
O(h2i+3), i > 0, sow=w1+w2+O(h5). In a similar way we find thatf (0)+ (f (0), f (1)) =
w1+ w2+ O(h5). j

It is important to bear in mind that a time steph of the exact flow8h
f is written as the

time-1 flow of the vector fieldw(x0, h).

2.2.1. Hamiltonian Systems

Many important differential equations are Hamiltonian and deserve special attention,
emphasising the qualitative properties of such systems. Even though the general treatment
above is still valid, we now present the Hamiltonian version of the same results for the con-
venience of the reader. Given the Hamiltonian functionH(q, p, t) : R2l × R→ R, where
q, p ∈ Rl are the coordinates and momenta of the system, the Hamiltonian equations are

dq
dt
= ∂H

∂p
,

dp
dt
= −∂H

∂q
. (30)

By introducing the notationx = (q, p) = (q1, . . . ,ql , p1, . . . , pl ), (30) can be simplified
to

dx
dt
= L H(x,t)x, (31)

whereL H is the Lie derivative associated with the functionH ,

L H =
l∑

i=1

(
∂H

∂pi

∂

∂qi
− ∂H

∂qi

∂

∂pi

)
=

l∑
i, j=1

∂H

∂xi
Ji, j

∂

∂xj
, (32)

with J = (0 −I
I 0 ) and I is thel × l identity matrix. This Lie derivative is a particular case

of L f whenf = −J ∂H
∂x , and all previous results are valid. It is interesting to mention that

given two functionsH andG

[L H , LG] = L K ,

whereK = {H,G} = LG H is the Lie Poisson bracket of functions on phase spaceR2l .
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The Magnus approximations (27) and (28) now take the form

8h
H = exp(LW) = exp

(
LW1+W2

)+ O(h5) (33)

= exp
(
L H (0)+{H (0),H (1)}

)+ O(h5), (34)

where

W1(x0, h) =
∫ h

0
H(x0, s) ds,

(35)

W2(x0, h) = −1

2

∫ h

0
ds1

∫ s1

0
ds2{H(x0, s1), H(x0, s2)}.

The Magnus expansion as an analytical approximation for Hamiltonian systems was first
presented in [24]. To illustrate how the Magnus approximation can be used, let us consider
the Hamiltonian

H(q, p, t) = T(p, t)+ V(q, t), (36)

which is separable into two easily solvable parts. If we integrate this system for a time step
h using (34), then

H (i ) = T (i )(p)+ V (i )(q),

and the integration for a time steph is equivalent to solving the autonomous Hamiltonian

Ĥ(q, p) = T (0)(p)+ V (0)(q)+ {T (0)(p),V (1)(q)
}+ {V (0)(q), T (1)(p)

}
for a time stept = 1. The main problem in numerically solving this system using, for
example, symplectic integrators is that, in general, the Hamiltonian is no longer separable
into easily solvable parts.

Another possibility for solving (36) is to rewrite the Hamiltonian as an autonomous
system with two new coordinates and momenta,

H̃ = (T(p,qt
1

)+ pt
2

)+ (V(q,qt
2

)+ pt
1

) = H̃1+ H̃2, (37)

which is separable into two solvable parts, so that the splitting or PRK method (3) can be
used. Then one step of the method becomes

(qh, ph) =
m∏

i=1

exp(haiH1(p0, βi h)) exp(hbiH2(q0, αi h))(q0, p0), (38)

whereαi =
∑i

j=1 aj , βi =
∑i−1

j=0 bj ,with b0 = 0 andH1 = L H̃1
,H2 = L H̃2

. This method
is very easy to use, but unless special attention is paid to the implementation the performance
can be reduced.
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• The method requiresm evaluations of the time-dependent functions inT andV . As we
will see later, the most efficient fourth-order methods havem≥ 5. On the other hand, using
Magnus and the Gaussian quadrature only two evaluations are necessary. At the same time,
if T andV share the same time-dependent functions, only two evaluations are necessary
for Magnus versus 2m using (38).
• It is important to keep in mind that ifT is quadratic in momenta, e.g.,T = pT M(t)p,

with M ∈ Rl×l , it is not possible to use RKN methods when splitting the Hamiltonian as in
(37), and thus a less efficient PRK method has to be used.

As we can see, both techniques (Magnus and splitting) have advantages and disadvan-
tages. In the next section, we will show how to construct new numerical methods which
share the advantages of the previous techniques, i.e., are easy to use and efficiently manage
the time-dependent part.

3. FACTORING THE MAGNUS SERIES

Let us assume that exp(α1L f(0) + α2L f(1) ) is easy to evaluate analytically or numerically.
This is the case, for example, for the Hamiltonian (36) where the previousα1f (0) + α2f (1)

term would be associated to the Hamiltonian

Ĥ(q, p) = α1
(
T (0)(p)+ V (0)(q)

)+ α2
(
T (1)(p)+ V (1)(q)

)
= (α1T (0)(p)+ α2T (1)(p)

)+ (α1V (0)(q)+ α2V (1)(q)
)

= T̂(p)+ V̂(q), (39)

where a splitting method can be applied.

THEOREM 3.1. Given A(0), A(1), f (0), and f (1) defined according to(7) and a time step
t= h, the following are fourth-order approximations to the exact solutions of(4) and(25),

8h
A = exp(Ä(h)) (40)

= exp

(
1

2
A(0) + 2A(1)

)
exp

(
1

2
A(0) − 2A(1)

)
+ O(h5) (41)

= exp
(

A(1)
)

exp
(

A(0)
)

exp
(−A(1)

)+ O(h5), (42)

8h
f = exp

(
Lw(h)

) = exp
(

L 1
2 f(0)−2f(1)

)
exp
(

L 1
2 f(0)+2f(1)

)
+ O(h5) (43)

= exp
(−L f(1)

)
exp
(
L f(0)

)
exp
(
L f(1)

)+ O(h5), (44)

wheref (i ) = f (i )(x0, h), i = 0, 1.

Proof. From the definitions (7) we observe thatZ(0)(h) = O(h) andZ(1)(h) = O(h2).
Then, using the BCH formulas

exp(X) exp(Y) = exp

(
X + Y + 1

2
[X,Y] + 1

12
([X, [X,Y]] + [Y, [Y, X]])+ · · ·

)
,

exp(X) exp(Y) exp(−X) = exp

(
Y + [X,Y] + 1

2
[X, [X,Y]] + · · ·

)
,

we see that (41) and (42) agree with (10), and (43) and (44) agree with (28) up to orderh4,
respectively. j
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3.1. Time Symmetry

Next, we study if the new methods preserve time symmetry.

DEFINITION. A one-step method,xh = 2(t0+ h, t0, x0), is time symmetric if it satisfies
x0 = 2(t f − h, t f , xh) with t f = t0+ h.

In other words, if we integrate an ODE numerically over one step,h, followed by an
integration of the same ODE backwards in time using the same method but with time step
−h, we recover the initial condition. If we use the short notation2(h) for the method, then
2 is time symmetric if

2−1(h) = 2(−h). (45)

Time symmetry is an important qualitative property of the exact solution, and sometimes
it is interesting to preserve it in numerical approximations. This has been shown in case for
ODEs with periodic solutions and small perturbations of such. Numerical experiments show
that time symmetry can be a geometric quality on an equal footing with symplecticity for
Hamiltonian ODE systems. For the methods presented in Theorem 3.1 we have the following
theorem.

THEOREM3.2. The fourth-order approximations(41)–(44) preserve time symmetry.

Proof. From definition (7) and rewritingZ(0)(h) = ∫ h/2
−h/2 Z(s+ h/2) ds, we have

Z(0)(−h)=−Z(0)(h), Z(1)(−h)= Z(1)(h), which is the symmetry forA(i )(h)andf (i )(x0, h),
i = 0, 1. Considering (41), we have

2(−h) ≡ exp

(
1

2
A(0)(−h)+ 2A(1)(−h)

)
exp

(
1

2
A(0)(−h)− 2A(1)(−h)

)
= exp

(
−1

2
A(0)(h)+ 2A(1)(h)

)
exp

(
−1

2
A(0)(h)− 2A(1)(h)

)
≡ 2−1(h);

hence it is time symmetric. A similar proof holds for (42). However, for the nonlinear case
it is not so straightforward. If we consider (43), then

xh = exp
(

L 1
2 f(0)(x0,h)−2f(1)(x0,h)

)
exp
(

L 1
2 f(0)(x0,h)+2f(1)(x0,h)

)
x0

= 91(x0), (46)

and we have to prove that, using the same method onxh with a time step−h, we recover
the initial conditionx0:

2(t f − h, t f , xh)

≡ exp
(

L 1
2 f(0)(xh,−h)−2f(1)(xh,−h)

)
exp
(

L 1
2 f(0)(xh,−h)+2f(1)(xh,−h)

)
xh

= exp
(
−L 1

2 f(0)(xh,h)+2f(1)(xh,h)

)
exp
(
−L 1

2 f(0)(xh,h)−2f(1)(xh,h)

)
xh

=92(xh).
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Taking into account how Lie transforms act and using (46), we have

2(t f − h, t f , xh) = 92(xh)

= exp
(

L 1
2 f(0)(x0,h)−2f(1)(x0,h)

)
exp
(

L 1
2 f(0)(x0,h)+2f(1)(x0,h)

)
92(x0)

= exp
(

L 1
2 f(0)(x0,h)−2f(1)(x0,h)

)
exp
(

L 1
2 f(0)(x0,h)+2f(1)(x0,h)

)
× exp

(
−L 1

2 f(0)(x0,h)+2f(1)(x0,h)

)
exp
(
−L 1

2 f(0)(x0,h)−2f(1)(x0,h)

)
x0 = x0,

as we wanted to prove. A similar proof can be used for (44).j

3.2. Error Estimation

The fourth-order methods (27), (28), (43), and (44) give different approximations to the
exact solution,2 and it is interesting to know how the errors depend onf and its derivatives.
In this section we will give the leading error for each method. The exact solution is given
formally byx(h) = exp(Lw(x0,h))x0. Considering the Taylor expansion (29), evaluating the
integrals, and using the BCH formula in (43) and (44), we can write all approximations
asx̃(h) = exp(L w̃(h))x0, wherew̃ is a vector depending on thef i ’s and their Lie brackets.
Considering that̃w = w+ O(h5), it follows that the local error is given by

x(h)− x̃(h) = (exp
(
Lw(x0,h)

)− exp
(
L w̃(x0,h)

))
x0

= Lw(x0,h)−w̃(x0,h)x0+ O(h6)

= (w− w̃)(x0)+ O(h6), (47)

so the leading error term is given by the vectorw− w̃ evaluated at initial conditions, which
is of orderO(h5). After a few simple algebraic operations, all approximations take the form

w− w̃ = h5(α1(f1, f2)+ α2(f0, (f0, f2))+ α3(f1, (f0, f1))+ α4(f0, (f0, (f0, f1))))+ O(h6),

(48)

where the values ofα1, α2, α3, andα4 for each method are given in Table I. If a numerical
quadrature is used for evaluating the integrals, then more terms will appear in the leading
error term, depending on the quadrature used.

TABLE I

Coefficients of the Leading Error Term (48) for M4 (Eq. (27)),

M4I (Eq. (28)), 2EX (Eq. (43)), and 3EX (Eq. (44))

α1 α2 α3 α4

M4 0 1
360

− 1
240

− 1
720

M4I 1
360

1
360

− 1
240

− 1
720

2EX 1
360

1
360

1
2160

− 1
2880

3EX 1
360

1
360

− 1
1440

− 1
720

2 But if, e.g.,(f(x, t1), f(x, t2)) = 0,∀t1, t2, then all methods give the exact solution.
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It is important to remember that the efficiency of a method depends not only on its error
but also on its computational cost. For the methods considered, the computational cost is
highly dependent on the problem.

4. SEPARABLE SYSTEMS

Frequently, Eq. (1) is separable into two parts,f(x, t) = f A(x, t)+ fB(x, t), such that

dx
dt
= α1f(0)A (x)+ α2f(1)A (x),

dx
dt
= β1f(0)B (x)+ β2f(1)B (x) (49)

are exactly solvable (or at least easy to evaluate up to the desired order). Thus, each expo-
nential in the Magnus factorisations (43) and (44) is the sum of exactly solvable terms, and
standard splitting (PRK or RKN) methods can be used.

Considering that the new methods based on Magnus series are of fourth order, we are
interested in splitting methods such as (3), of this order of accuracy. In the literature we
find a number of methods, many especially tailored for particular structures ofX andY.
To avoid the use of different methods for each problem, we will present a new fourth-order
method which works more efficiently for the important case of quadratic kinetic energy
(“RKN” problems) than any other method we found in the literature. In addition, it will
work as efficiently as the best PRK method we know for the most general case ofX andY
and will be competitive for other structures assumed onX andY.

We have

m∏
i=1

exp(hai X) exp(hbi Y) = exp(h(X + Y))+ h5R+O(h6), (50)

whereR constitutes the main error terms. Such a method is completely determined by the
vectorsa= (a1, . . . ,am) andb = (b1, . . . ,bm) and can be considered a PRK method.

Let us study the general case where no special structure is assumed onX andY (the
FLA [free Lie algebra] case). LetL(X,Y) denote the algebra whose elements areX,Y, and
all elements obtained through the vector space operations of addition and multiplication
by scalars together with the commutator. The subsetL5(X,Y) of commutators with five
operators can be represented by the six-dimensional basis

E5,1 = [X, [X, [X, [X,Y]]]] , E5,6 = [Y, [Y, [Y, [Y, X]]]] ,

E5,2 = [Y, [X, [X, [X,Y]]]] , E5,5 = [X, [Y, [Y, [Y, X]]]] ,

E5,3 = [X, [X, [Y, [Y, X]]]] , E5,4 = [Y, [Y, [X, [X,Y]]]] ;

thus we can writeR=∑6
i=1 ri E5,i . It is usual to define the leading error coefficient of (50)

as the Euclidian norm of the vectorr = (r1, . . . , r6); i.e.,E =
√∑

i r 2
i . Then, to compare

the efficiency of different methods, one has to consider its cost per step. In (50),m is usually
proportional to the cost of one step, but not always. For example, the second-order leapfrog
method exp( h

2 A) exp(B) exp( h
2 A) would correspond tom= 2 with a= (1/2, 1/2) and

b = (1, 0), but sinceb2 = 0 the last “A-exponential” can be concatenated with the first one
in the next step. Thus, effectively the cost per step is lowered by one function evaluation.
This is also the case of all symmetric compositions. In such cases, we will assume that the
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cost is proportional tom− 1 instead ofm. This property is usually referred to as first same
as last (or just FSAL). With these assumptions the standard definition for the effective error
is E f = µE1/4, whereµ = m orµ = m− 1 accordingly. This is a measure of the accuracy
ash→ 0 for nonstiff problems. We will take the method with the smaller effective error
as the most efficient method. It is important to note that the adjoint composition of (50)
(obtained through reversing the order of the exponentials) has exactly the same order and
error, and therefore we need not consider those cases here.

In the following we consider different structures forX andY, and for each case we look
for the most efficient splitting method.

1. RKN . This corresponds to the special case in which [Y, [Y, [Y, X]]] = 0. Considering
that now E5,5 = E5,6 = 0, a complete description of the leading error term is given by
the vectorr = (r1, . . . , r4). In this caseX andY are qualitatively different and cannot be
interchanged. For example, if in (50) we takea1 = 0 we will find methods with differentE f

values than when we considerbm = 0. In [27] a nonsymmetric composition withm= 5 and
a1 = 0 is presented, whose effective error constant isE f = 0.476. Withm= 4 a method
with E f = 0.509 has been found [17]. Symmetric compositions withbm = 0 can also be
found in [18] for m= 5 andm= 6 with E f = 0.634 andE f = 0.527, respectively. We
found no other symmetric compositions witha1 = 0, and hence a search for methods with
m= 5 andm= 6 was initiated. In the first case no improved methods were found, while
for m= 6 a new method withE f = 0.360 was discovered; let us denote this method asS∗.
S∗ is the most efficient method known to us of this type and it is given by the coefficients

a= (0,a2,a3,a4,a3,a2), b = (b1, b2, b3, b3, b2, b1), (51)

with

a2 = 0.254, a3 = −0.032290201410934288448, a4 = 1− 2(a2+ a3),

(52)
b1 = 0.084, b2 = 0.682281125946589406371, b3 = 1

2
− (b1+ b2).

The error coefficients of the method are given by

r = 10−5× (−0.82, 2.13,−0.65,−1.28, 23.07, 9.95), (53)

andE f = (m− 1)(
√

r 2
1 + · · · + r 2

4)
1/4= 0.360.

Observe that for this type of problemY commutes with [Y, [Y, X]] and for many other
problems both operators represent exactly solvable ODEs. It is therefore also interest-
ing to consider not only exponentials ofX andY but instead of theY′s,Cbi ,ci = bi Y +
h2ci [Y, [Y, X]] (called a modified potential). If the commutator is not very expensive to
evaluate, such methods can possibly lead to very efficient schemes, and one scheme of this
type is presented in [15]:

a=
(

0,
1

2
,

1

2

)
, b =

(
1

6
,

2

3
,

1

6

)
, c=

(
0,− 1

72
, 0

)
. (54)

The effective error of the method isE f = µmE1/4 = µm0.164, whereµm will depend on
the cost of the modified potentials. It is usual to take into consideration the cost as a number
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in the intervalµm ∈ (µ,µ+ π), whereπ is the number of modified potentials appearing
in the scheme. With this criterion we findE f ∈ (0.327, 0.491), and in practice it does not
improve the previous method by much. We have analysed the uni-parametric family of
solutions in the casec1 = c3 6= 0, obtaining a minimum very close toc1 = c3 = 0, with
E f = µm0.156. This improvement is too small to compensate for the presence of extra
modified potentials. The caseb3 = c3 = 0 gave two solutions, but these solutions also had
a bigger error constant.

2. Free Lie Algebra (FLA) . This corresponds to the general case where no simplification
in the algebra is possible. In this case, it seems preferable to consider only symmetric com-
positions whereX andY are interchangeable. The Ruth–Yoshida method withm= 4 given
in [30] hasE f = 1.335. Form= 5 andm= 6 we found two methods withE f = 0.708
and E f = 0.623, respectively [17]. The RKN schemeS∗, being symmetric, turns out to
be by a stroke of luck a fourth-order method also for this case withE f = 0.630. This is,
essentially, as efficient as the best method and has the additional property of being much
better in the RKN case; so we conclude this paragraph by recommending schemeS∗.

3. RKN2. This corresponds to the case [Y, [Y, [Y, X]]] = [X, [X, [X,Y]]] = 0. We will
take r = (r3, r4) in the definition of the error, becauseE5,1 = E5,2 = E5,5 = E5,6 = 0.
Observe that nowX andY can be considered qualitatively equivalent, and they are inter-
changeable. Several families of nonsymmetric methods where the coefficients of (50) satisfy
the relationbm+1−i = ai , i = 1, . . . ,m, are presented in [13]. This symmetry imposes that
r3 = r4, which is a useful property in some cases. For example, in [6] these schemes were
applied to a particular representation of the Schr¨odinger equation where unitarity was not
exactly preserved (as was the case for other symplectic integrators) but was retained at
higher order than the order of the method becauser3 = r4. The most efficient fourth-order
methods of [13], denoted by(m= 4, n = 4) and(m= 6, n = 4), haveE f = 0.342 and
E f = 0.322, respectively. On the other hand,S∗ hasE f = 0.308 for this problem and is
also here a good candidate for a numerical algorithm.

4. Near-Integrable (NI). This is the case in which‖Y‖ ¿ ‖X‖ for some norm. It is
therefore natural to optimise the accuracy with this priori information; hence one can con-
sider a smaller number of order conditions when constructing the method. It is now the case
that‖E5,i ‖ ¿ ‖E5,1‖, i = 2, . . . ,6, and an efficient method will be the one that minimises
the coefficient ofE5,1. For this problem, it is difficult to define a useful effective error
because one has to considerh as well as the size of‖Y‖ in the measure. Again,X andY are
qualitatively different and the number of possible methods is higher. For example, in [18]
we found two symmetric second-order methods (takingm= 3 anda1 = 0 orb3 = 0) which
work in practice as fourth-order methods for many problems. One of them is given by (54),
takingc2 = 0. Even more efficient symmetric fourth-order methods are presented in [18],
cancelling the coefficients ofE5,1, [X, E5,1], [X, [X, E5,1]], and [X, [X, [X, E5,1]]], and the
most efficient corresponds to the “(8, 4)BAB” method. The error coefficients of this method
arer = 10−5× (0, 1.08,−44.79, . . .), where the coefficients ofE5,2 andE5,3 (containing
two B operators) give the main contribution to the overall error. From these coefficients
and comparing with the coefficient ofE5,1 in (53),−0.82× 10−5, we can see that, unless
‖Y‖<≈‖X‖/50, the methodS∗ will be more efficient (the coefficient of [X, [X, E5,1]] in S∗

is also very small). If‖B‖ was even smaller it would be sufficient to use the second-order
method (54) withc2 = 0 because the main contribution to the error would come from the
Magnus approximation.
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In conclusion, we have presented a new method which works very efficiently under many
assumptions on the vector fields. It is at least as accurate as some methods designed for
special vector fields. In our opinion, for most of the problems, it is highly recommended to
use only the new method.

One class of very efficient methods includes those based on processing techniques [3,
4, 20]. However, in this section we have considered only non-processed methods because
we are dealing with a time-dependent problem (X andY change at each step) and because
each step is approximated by two or three different exponentials. The processing technique
would be efficient for our problem only if the evaluation of each exponential in (43) and (44)
was split into a relatively large number of substeps, which is the case only for extremely
slowly varying vector fields.

5. NUMERICAL EXAMPLES

In this section we present numerical experiments that highlight the efficiency of the
proposed schemes. First, we study the performance of the new splitting methodS∗ applied to
several different separable autonomous Hamiltonians, in each of which there exist specially
tailored schemes with which we compare our method. Next, we apply the factored Magnus
series to non-autonomous systems to produce autonomous approximations which in turn
are solved using the new splitting schemeS∗. Finally, we study how the new methods
perform for oscillatory vector fields with different time scales for the frequency of the
time-dependent function.

5.1. Autonomous Systems

In the following, we testS∗ on four different systems of the types, separable (FLA),
quadratic kinetic energy (RKN), quadratic Hamiltonian (RKN2), and near-integrable (NI).
We will compareS∗ with the most efficient schemes in each case accordingly. In particular,
we will consider the following methods:

• FLA: The most efficient fourth-order symmetric method given in [19], denoted by
SFLA(triangles joined by lines).
• RKN: The most efficient fourth-order symmetric method given in [19], denoted by

SRKN (squares joined by lines).
• RKN2: The (m= 4, n = 4) scheme presented in [13], denoted bySRKN2 (asterisks

joined by lines).
• NI: The scheme(8, 4)− B ABpresented in [18], denoted bySNI (diamonds joined by

lines).
• The new schemeS∗ (circles joined by broken lines).
• The well-known symmetric fourth-order method of Ruth–Yoshida [30] (crosses joined

by lines). This is used as a reference method, because it is the best known and has been
used in many papers.

We consider four autonomous Hamiltonian systems and use the average error in energy
as a measure of accuracy. The interval of integration is not of great importance since the
average error in energy is always bounded by constants for all methods and problems
studied.
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FIG. 1. Average relative errors in energy vs number of evaluations for the Hamiltonians suitable for FLA (a),
RKN (b), RKN2 (c) and NI (d).

(a) FLA . The Hamiltonian considered is

H = 1

2
(p2+ q2)+ 1

2
p2q2, (55)

which is separable into two exactly solvable parts with no possible simplification in the
algebra. The initial conditions used are(q, p) = (2, 0), and we integrated the system along
the intervalt ∈ [0, 20 · 2π ]. Taking into account that all symmetric methods considered are
also fourth-order methods for FLA problems, in Fig. 1a we present the average error in
energy versus the number of function evaluations for different time steps. The numerical
experiment agrees very well with the theoretical result from the effective error analysis.

(b) RKN . The simple Hamiltonian associated with the pendulum will be used as a system
suitable for RKN methods,

H = 1

2
p2− cos(q). (56)

The initial conditions used are(q, p) = (0, 1), and we integrated the system along the
interval t ∈ [0, 20 · 2π ]. In Fig. 1b we give the average error in energy versus the number
of function evaluations for several time steps. In this case, the new method clearly shows
its superiority. Observe that it is approximately three orders of magnitude more accurate
than the Ruth–Yoshida method at the same computational cost, while it is one order of
magnitude more accurate than the previously most efficient method,SRKN.
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(c) RKN2. The simplest Hamiltonian suitable for RKN2 methods is the harmonic os-
cillator H = p2/2+ q2/2. But, to better understand the interest in RKN2 methods, we
will study a less trivial system. Let us consider the Schr¨odinger equation with the Morse
potential

i
d

dt
ψ(x, t) =

(
− 1

2µ

∂2

∂x2
+ D(1− e−αx)2

)
ψ(x, t), ψ(x, 0) = ψ0(x), (57)

with parametersµ = 1745 a.u., D = 0.2251 a.u., andα = 1.1741 a.u., corresponding to
the HF molecule. As initial conditions we will take the ground state, whose energy is
E0 = w0/2− w2

0/(16D), wherew0 = α
√

2D/µ, and we will integrate along the interval
t ∈ [0, 20 · 2π/w0]. We assume that the system is defined in the intervalx ∈ [−0.8, 4.32],
and we split this interval intoN = 64 parts of length1x = 0.08. Next we considercn =
ψ(xn, t)wherexn = x0+ n1x, n = 1, . . . , N, thus obtaining the finite-dimensional linear
equation

i
dc
dt
= Hc, c(0) = c0, (58)

wherec= (c1, . . . , cN)
T ∈ CN and H = T + V ∈ CN×N . Here V is a diagonal matrix

associated with the potential and with diagonal valuesV(xi ), i = 1, . . . , N, andT is a full
matrix associated with the kinetic energy. Fast Fourier transforms (FFT),F, give a way of
evaluatingTc = F−1DTFc, whereDT is diagonal andFc andF−1c can be evaluated using
only O(N log(N)) operations. If we define the real vectorsq = Rec andp = Im c, then
solving (58) is equivalent to solving

d

dt

{
q
p

}
=
(

0 H
−H 0

){
q
p

}
, (59)

which can be considered as the system associated with theN-dimensional Hamiltonian
H = 1

2pTHp + 1
2qTHq. Evaluating the exponential of (59) is prohibitively expensive, and

one has to look for alternative techniques. Since in this case the Hamiltonian is separable
into two solvable parts, the exponentiation can be done with RKN2 methods.
In Fig. 1c, we present the relative average error in energy versus the number of FFTs for
different time steps. The biggest time step taken corresponds to the stability limit of each
method. Observe the advantage ofS∗ versus the other methods not especially designed for
RKN2 problems. The good performance of the specially tailored RKN2 method can be
explained from the fact that the solutions of (58) and (59) evolve through a unitary and
an orthogonal transform, respectively. The splitting methods used preserve symplecticity
but not orthogonality for this problem. However, this particular RKN2 method preserves
unitarity to fifth order, as can be seen from the slope of its curve. This method has been
used in [6] in a time-dependent problem. Finally, we have to say that the RKN2 method
works this efficiently only if one uses the error in energy as a measure of accuracy, while
the error in position still behaves as predicted by the effective error analysis.

(d) NI . As a Hamiltonian suitable for NI methods we will consider the one used by
Hénon-Heiles,

H = 1

2

(
p2

x + p2
y + x2+ y2

)+ (x2y− 1

3
y3

)
. (60)
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TABLE II

Effective Error of the Methods Used in the Numerical Examples

E f,FLA E f,RKN E f,RKN2 105ENI

FLA 0.623 0.618 0.573 12.7+ 15.6ε
RKN 0.727 0.527 0.454 1.00+ 12.2ε
RKN2 — — 0.342 —
NI 0.812 0.799 0.799 0.00+ 44.8ε
S∗ 0.630 0.360 0.308 0.82+ 2.22ε
Ruth-Roshida 1.335 1.231 1.216 60.7+ 483ε

Note. Ef,3 = µE3, with3=FLA, RKN, RKN2, or NI,µ = m for RKN2 andµ = m− 1 for the others. In NI

methods we use a different definition for the errorENI = (µ/5)4 (|r1| + ε
√

r 2
2 + r 2

3) (ε ≈ ‖B‖/‖A‖).

We will study the evolution near the origin with initial conditionsx = y = px = py =
1/100, where the cubic term can be considered as a small perturbation. In Fig. 1d, we
give the average relative error in energy versus the number of evaluations.SNI is the most
efficient, butSRKN andS∗ have very similar performance since in both casesr1 is very small.

To better compare the results obtained in the numerical examples with the results theo-
retically expected, we have collected the effective error of the various methods in Table II.

Before this section concludes, it is important to note that for time-dependent Hamiltonians
of the form H = X(t)+ Y(t), the nature of the system might change as time evolves
between the classes Separable, RKN-type, RKN2-type, and Near-integrable. Thus the new
splitting method presented is a very natural candidate, which is nearly optimal for all these
cases.

Motivated by the above results, a deep search for symmetric fourth- and sixth-order
metods for FLA and RKN was started, and very efficient methods were obtained [7]. In
the search for fourth-order methods, taking both symmetric compositions andm= 7, we
improved the efficiency slightly for FLA and RKN methods separately, but not both together.

5.2. Non-autonomous Systems

In this section we will consider some Hamiltonians systems which are separable like
(36). The new schemes (43) and (44) take the form

2h
H = exp(T1+ V1) exp(T2+ V2)+ O(h5) (61)

= exp
(−T (1) − V (1)) exp

(
T (0) + V (0)) exp

(
T (1) + V (1))+ O(h5), (62)

whereT1,2 = L 1
2 T (0)∓2T (1) ,V1,2 = L 1

2 V (0)∓2V (1) , T (i ) = LT (i ) ,V (i ) = LV (i ) , i = 0, 1. If we use
the new splitting method,S∗, for each exponential in (61), we obtain

2h
H = exp(b1V1) exp(a2T1) exp(b2V1) · · ·exp(a2T1) exp(b2

(
V1+ V2) exp(a1T2)

· · ·exp(b2V2) exp(a2T2) exp(b1V2)+ O(h5). (63)

If we consider that the last exponential exp(b1V2) can be concatenated with the first ex-
ponential exp(b1V1) of the next step, then the method requires 10 evaluations of exp(T ) and
exp(V). Similarly, the scheme (62) requires 15 evaluations of each exponential. However,
if the kinetic energy is time-independent, thenT (1) = 0 and the schemeS∗ applied to (62)
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gives

2h
H = exp

(
b1V (0) − V (1)

)
exp
(
a2T (0)

)
exp
(
b2V (0)

)
· · ·exp

(
b2V (0)

)
exp
(
a2T (0)

)
exp
(
b1V (0) + V (1)

)+ O(h5), (64)

and one step requires only five evaluations of exp(T ) and exp(V).

EXAMPLE 1 (LINEARLY FORCED POTENTIAL). Let us consider a Hamiltonian with a
linearly forced potential:

H(q, p, t) = 1

2
pTp+ V(q)+ f (t)q. (65)

Considering that

{H(q, p,t1), H(q, p,t2)} = ( f (t1)− f (t2))p,

it is easy to check that (27), (28), and (44) are equivalent, so we will only consider (43) and
(44). As a simple example, we take the forced pendulum,

H = 1

2
p2− cos(q)− F cos(wt)q, (66)

with F andw constants. This Hamiltonian is one of the most popular non-linear systems
appearing in textbooks because of its simplicity and its richness in qualitative properties.

At this point, we are only interested in the error introduced by the approximations (43) and
(44), so each of the exponentials will be evaluated up to machine accuracy (with the help of
splitting methods). The integrals will be evaluated both analytically and numerically using
the fourth-order Gaussian quadrature previously mentioned. We takeF = 1/10, w = 2
and initial conditions(q, p) = (0, 1) and use measure the average error in (q, p) along the
intervalt ∈ [0, 5000· 2π ], using the same time steph = π/20 for all methods.

Figure 2a shows the results when the integrals are evaluated analytically: 2EX and 3EX
refer to (43) and (44), respectively. As a reference, we show the results obtained using
the standard fourth-order Runge–Kutta method. Observe that the error of the RK4 method
grows faster since it is not symplectic. Other non-symplectic methods such as standard
multistep algorithms have the same qualitative behaviour, so they are not considered in this
paper. We then approximate the integrals using the fourth-order Gaussian quadrature as in
(8) (2EXq and 3EXq). Figure 2b shows the results obtained. We also present the results
obtained, for the same time step, when using theSRKN and S∗ methods directly without
using Magnus. Note the improvement in accuracy for 2EX when using quadratures.

It is important to remember that the efficiency of a method also depends on its computa-
tional cost. This point will be considered in the following examples.

EXAMPLE 2. Let us consider the Hamiltonian studied in [8],

H(q, p, t) = 1

2
p2+ 1

2
q2+ ε

k∑
i=1

cos(q − ωi t), (67)

which describes the motion of a charged particle in a constant magnetic field perturbed byk
electrostatic plane waves (propagting along the direction of the motion), each with the same
wavenumber and amplitude, but with different temporal frequenciesωi . This Hamiltonian
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FIG. 2. Average errors in position vs time for the forced pendulum (66).

can be written as

H(q, p, t) = 1

2
p2+ 1

2
q2+ ε cos(q)g1(t)+ ε sin(q)g2(t), (68)

with g1(t) =
∑k

i=1 cos(wkt), g2(t) =
∑k

i=1 sin(wi t). Observe that, for moderate values of
k, the cost of evaluating one step using a given method will be, essentially, proportional
to the number of evaluations ofg1(t) andg2(t), because it is the most costly part of the
Hamiltonian.

We take as initial conditionsq0 = 0, p0 = 11.2075, and we chooseωi = iω0, with
ω0 = 1/10 andk = 10. Figure 3 show the Poincar´e mappings obtained by plotting points
at discrete timest j = 2π j/w0, with 1000 plotted points. Forε = 0.25 we see a closed
trajectory and forε = 1.25 we find five closed and very narrow trajectories.

The kinetic energy is time-independent and quadratic in momentum, so it is possible to
use RKN methods. We will compare the RKN methodsSRKN andS∗ (five evaluations ofg1

andg2 per step) versus the schemes based on Magnus, (43) and (44), also implemented with
S∗ according to (63) and (64). The integrals are approximated using the mentioned Gaussian
quadrature (the quadrature gives, essentially, the same result as the analytical solution).

Let us denote by(qk, pk) = (q(tk), p(tk)) the points at the Poincar´e map. Given a method
and a time steph = 2π/N with N an integer, we obtain a set of points (q̃k, p̃k), and we
defineδ = max{|qk − q̃k| + |pk − p̃k| : k = 1, . . . ,100}. For each method we choose the
minimum value ofN such thatδ < 10−3, and for this value ofN we measure the CPU time
in seconds. Table III shows the results obtained, where the superiority of the methods based
on Magnus is clear, 2EXq being the most efficient.

EXAMPLE 3. Let us consider the equation

q̈ = Aq̇+ f(q, t), q0 = q(t0) ∈ Rl , (69)

with AT = A ∈ Rl×l , f(q, t) = − ∂
∂q V(q, t), and where the dots indicate derivatives respect
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FIG. 3. Poincaré map of a single trajectory of (68). Initial conditions are(q0, p0) = (0, 11.2075), k =
10, w0 = 1/10 and (a)ε = 0.25 and (b)ε = 1.25.

to t. Then forl = 1, this system can be obtained from the Hamiltonian

H = 1

2
pT M(t)p+ M−1(t)V(q, t), (70)

with Ṁ = AM so thatM = exp(t A) and wherep = M−1 q̇ and has the form (36). For
l > 1 we can consider the system

q̇ = M(t)p

ṗ = M(t)−1 ∂

∂q
V(q, t).

A general PRK method applied to (37) requiresm evaluations ofM(t) and anotherm
evaluations ofM−1(t)at different points. On the other hand a Magnus-based method requires
only two evaluationsM(t) andM−1(t) at the same points (if using, e.g., the fourth-order
Gaussian quadrature).

TABLE III

Minimum Value of N Such Thatδ < 10−3

ε = 0.25 ε = 1.25

CPU (S) N CPU (S) N

2EXq 4.00 38 7.70 74
3EXq 4.90 58 10.6 121
S∗ 8.50 38 15.6 71
SRKN 10.7 48 14.8 68
RK4 12.0 152 26.5 331

Note.The Time Step ish = 2π/N.
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These considerations are very important because, in most of the cases, the cost of the
method will be essentially the cost of the evaluations ofM(t) andM−1(t).

If the matrixA is time-dependent, thenM(t) will be the solution of the equatioṅM =
A(t)M , which can be solved numerically using the Magnus expansion for linear systems.

A system of coupled Duffing oscillators is a particular case of (69). Examples of two-
dimensional coupled systems can be found in [25]. For simplicity, we consider the one-
dimensional case

q̈ = εq̇ + q − q3+ δ cos(wt), (71)

with ε = 10−4, δ = 10−3, ω = 1/2, and initial conditionsp(0) = 0.0 andq(0) = 1.75. For
solving its Hamiltonian system, we will consider the following:

1. The new factored Magnus method (43), denoted by 2EXq, where the integrals are
approximated using the Gaussian quadrature, implemented with the new optimised RKN
methodS∗.

2. The optimal fourth-order PRK method,SFLA, applied to (70) using the splitting (37).
This would correspond to the solution of (1) using the transformation (2) and having the
inefficiency mentioned in the third point.

3. The Ruth–Yoshida fourth-order PRK method. It is used only as a reference because
it is a well-known method and has been frequently used.

4. The classical RK method of order 4, RK4. It is used only as a reference.

The time step chosen is normalised so that the computational cost in terms of execu-
tion time is the same for all schemes (on the machines we used). Figure 4 clearly shows

FIG. 4. Relative errors in position vs time at the same computational cost.
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the advantage of handling the time dependency explicitly when solving nonautonomous
problems. The computational saving in this problem comes from reducing the number of
function evaluations in addition to allowing a specialised RKN method to be applied. The
plot shows clearly that the Ruth–Yoshida method has effective error orders of magnitude
larger than the most optimised methods, whileSFLA gives an error approximately two and
a half orders of magnitude larger than the Magnus-based splitting method. For reference
the number of time-dependent function evaluations for the Magnus-based method,SFLA,
Ruth–Yoshida, and Runge–Kutta is for this example 2, 5, 3, and 2 per step, respectively.

This system has chaotic evolution for the parameters and initial conditions chosen, but
the small value ofε makes the system close to integrable and the chaotic effect very
small. This explains the linear error growth observed in the experiment along the interval
studied.

5.3. Performance for Different Time Scales

In this paper we have presented new numerical methods derived from the Magnus series.
The error of these methods will come from the Magnus series truncation and from the
particular factorisation considered, and it is ultimately dependent on the smoothness in the
variablet of the vector fieldf(x, t). To have a better idea about the performance of the new
methods in problems with different time scales, we will consider again the forced pendulum

H = 1

2
p2− cos(q)− F cos(ωt)q, (72)

with F = 1/10, initial conditions(q, p) = (0, 1), and we wil study the error of the methods
for ω ∈ [1/10, 100] andt ∈ [0, 100· 2π ].

Considering that all methods are of the same order and qualitatively the same error
growth, for each value ofw we will look for the number of evaluations required to reach
a given accuracy. The various methods are all implemented with Gaussian quadrature for
integrals using the new splitting method. We will also consider the symmetric RKN method
SRKN for comparison.

In Fig. 5 we give the number of evaluations againstw at fixed accuracy 10−8 in (q, p).
Figure 5a shows the number of evaluations of the potential plus the number of time-
dependent functions evaluations, a number which is for this example proportional to the
CPU time because the cost of the derivative of the potential (sin(q)) is similar to one
evaluation of the time-dependent function (cos(wt)).

In Fig. 5b we present the same computation but the cost is given as the number of time-
dependent function evaluations. This picture would be representative of problems where the
time-dependent part was the most expensive, as is the case of the two previous autonomous
systems. The scheme (44) is superior only if evoluation of the potential is expensive and
when values ofω are around the resonance, but its performance deteriorates asω→∞. If
the time-dependent part is expensive, or the frequency is particularly high or low compared
to the natural frequency of the autonomous systems (F = 0), then (43) with two exponentials
is always the best scheme. In the regionω ∈ [0, 1/2] the Magnus approximation is very
accurate (in the limitω→ 0 the system would be autonomous) and the error comes only
from the splitting method used. Thus, if the evaluation of the potential is cheaper than
evaluating the time-dependent part, it is more efficient to use high-order splitting methods
or to split the time step and to use the fourth-order splitting method repeatedly.
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FIG. 5. Number of evaluations vsw for the forced pendulum (72) for the new methods based on Magnus
(2EXq, 3EXq) and a standard symplectic integrator (SRKN): (a) number of evaluations of the potential plus the time
dependent evaluations (equivalent to the CPU time for this particular problem); (b) number of time dependent
evaluations.

Observe that according to Fig. 5b, 2EXq is approximately seven times faster (for most of
the frequencies) than the standard symplecticSRKN in case the time-dependent part is the
most expensive to evaluate.

6. CONCLUSIONS

We have presented new numerical integration schemes for ordinary differential equa-
tions which evolve on the same solution manifold as the exact solution. These methods
are based on Magnus expansions and can be consideredgeometric integrators, retain-
ing many of the qualitative properties of the exact solution. To avoid the presence of
the troublesome commutators we factor the fourth-order Magnus series as a product of
two and three simple exponentials. Such an approach seems to be attractive for separable
Hamiltonian systems, where the otherwise present commutators would render the Hamil-
tonian non separable.

To implement these schemes in an optimal way, we also presented a new fourth-order
symmetric splitting method. This method works more efficiently than other fourth-order
methods we found in the literature for RKN problems. At the same time, it works nearly as
efficiently as the best methods especially designed for general separable problems, linear
problems, and near integrable problems.

The numerical experiments show the high performance of the new methods, in particular
when the time-dependent part of the system is expensive to evaluate. The high accuracy
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obtained comes both from the efficient management of the time-dependent functions, using
the averaging technique, and from the efficiency of the new splitting method.

The good results obtained encouraged us to look for higher order splitting methods [7]
as well as more sophisticated schemes for different types of problems. New methods for
evaluating operator exponentials when splitting methods cannot be used or are expensive
constitute an important part of the approach presented in this paper, and we hope to return
to this topic at a later point.

Sixth-order methods based on factored Magnus series have also been studied by the
authors. They require only three evaluations of the time-dependent functions (if a sixth-
order Gaussian quadrature is used), but a minimum of five exponentials are necessary.
Furthermore, good sixth-order spliting methods require at least 10 stages [7]; so if each
exponential in the Magnus factorisation is implemented with one of these methods, each
step will involve such a large number of evaluations that they will probably becomes on
competitive versus other methods. For this reason, they have not been studied in the same
detail as the fourth-order methods and are not presented in this paper.

A very interesting application of the idea presented in this paper is the geometric integra-
tion of stochastically perturbed Hamiltonian systems. For such systems the non-autonomous
terms are exchanged with random terms [10]. Making sure the appropriate calculus was
applied, we were able to construct low-order symplectic methods for such systems. Prelim-
inary numerical experiments showed that these methods give results which are qualitatively
closer to the true solutions, retaining, e.g., certain invariant measures compared to traditional
schemes for stochastic ODES.
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