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We present an algorithm for numerically integrating non-autonomous Hamiltonian
differential equations. Special attention is paid to the separable case and, in particular,
anew fourth-order splitting method is presented which in a certain measure is optimal.
In combination with a new way of handling non-autonomous problems, the schemes
we present are based on Magnus expansions and they show very promising results
when applied to Hamiltonian ODEs and PDESg) 2001 Academic Press
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1. INTRODUCTION

Geometric integratior{Gl) of differential equations has been a research area spinnil
off many useful results in the past decade. The focus of Gl is the construction of numer
methods that retain algebraic and differential algebraic structures. By doing so in a nat
way it leads to improved numerical accuracy. Maybe most importantly, structures that
stable under perturbations lend themselves to backward error analysis results which ce
used to predict and analyse error growth of numerical methods [27]. Hamiltonian syste
whose phase spaces possess a symplectic structure are maybe the most important o
systems. Special symplectic integrators retaining this structure have been constructed
the most successful integrators of this type siplitting methodsSince the pioneering
papers of Ruth [26], Candy and Rozmus [8], Suzuki [28], and Yoshida [30], a large num|
of methods have appeared [17, 19, 27]. This new family of methods have been success
applied in celestial mechanics [29], plasma simulations [9], quantum mechanics [13, :
etc. Essentially, the methods work by splitting the vector field defining the different
eqguation into a sum whose terms are exactly integrable, and they are thus of quite a ge
nature.
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206 BLANES AND MOAN

In this paper we present new numerical methods for solving nonlinear differential eq
tions

% =f(x,1),  Xo=X(to) € R", @)

withf € R" x R — R" (henceforthty = 0). Inthe linear casé(x, t) = A(t)x, the Magnus
expansion [21] represents the solution as an exponertial= exp(L2 (t))x(0). This ex-
pansion has been successfully used for obtaining efficient numerical methods [5, 14,
both because it preserves the structure of the exact solution and because of the sf
treatment of the time-dependent part. In the nonlinear case, the time-dependent pa
f(x, t) plays an important role in many problems. In this case it is important to have num
ical methods which can take special care of the time-dependent part while preserving
qualitative properties of the exact solution. The simplest and most used trick for avoid
the time-dependent functions is to consitlexss a new coordinate;, thus increasing the
dimension of the phase space, whereupon one solves the transformed equation

dy

with a standard algorithm, wheye= (x, x;) andF(y) = (f(y), 1). In many cases this trans-
formation is not very efficient for numerically solving the problem. Examples of problen
where this could be the case are as follows:

o If the explicit time dependency dfhas a relatively short time scale, then the main
contribution to the error will originate from it. By explicitly handling the time dependenc
specialised quadratures, or even exact integrals, can be applied.

o If the time-dependent functions appearing are expensive to evaluate, the methods
for solving (2) will in general be expensive since they do not attempt to minimise the numlt
of time evaluations.

e There are many numerical methods which are especially efficient for solving (
if f is time independent and has some special structure. In (2) the time dependenc
eliminated, but the structure of the equation can be destroyed, and one has to resc
more general and less efficient methods. This is the case, for example, if one consi
the HamiltonianH (g, p, t) = p" M(t)p + V(q, t). Runge—Kutta—Nystrh (RKN) meth-
ods for Hamiltonians with quadratic kinetic energy cannot be used after the introductior
the new coordinates associated to the time and its momentum, as we will see later in n
detail.

To avoid these problems, we present numerical methods based on the Magnus series.
one time steph, the Magnus approximation can be considered a time-averaging meth
where as an example the standard averaging of (1) gives

dx

Fri f(X),  x(0) =x(0),

with f(%) = %fohfo"(, s)ds. This is an approximation that in turn leads to a second-orde
approximation to the solutioR(h) = x(h) + O(h®). As we will see, this corresponds to
truncating the Magnus series after the first term.
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This paper contains two main parts:

1. First, we generalise the Magnus expansion to non-linear systems. In general, metl
which are direct applications of the Magnus expansion are difficult to implement or ¢
very expensive to run. Motivated by these facts we show how to write this exponential e
product of exponentials, which are much easier to compute. In particular, we present
fourth-order factorisations of the Magnus expansion.

2. Frequently the vector field takes the form f5 + fg, withf 5 andfg exactly solvable.

In this case, usually each term in the Magnus factorisation will correspond to the fls
associated to a sum of two exactly solvable vector fields. Thus, itis interesting to implem
the Magnus factorisation with fourth-order splitting methods, such as

exph(X +Y)) = [[ exptha X) exp(hby Y) + O(h°), (3)

i=1

where X andY are two operators which do not commute. This family of methods ai
usually referred to as partitioned Runge—Kutta (PRK) methods [27]. To get an efficie
implementation, we made a search for good fourth-order splitting methods and foun
novel splitting method optimised for the second-order prob%%n: g(x, t). This method
also showed very favourable performance for other structures on the vectof fialudf 5.
This paper is organised as follows. Section 2 contains a short review of the Magnus s¢
for linear systems and how it can be used to construct numerical methods for such syst
Next, we take the formalism of linear systems a step further and use the Magnus serie
a representation of the solution of non-linear non-autonomous ODESs. Section 3 introdt
a factorisation of the Magnus series derived from the Baker—Campbell-Hausdorff form
which removes the otherwise cumbersome commutators. We prove that the new metl
are time symmetric and present an error analysis. To implement the new methods whel
vector field is separable into two solvable parts, Section 4 introduces splitting methods
nonautonomous separable systems. That section also summarises the known fourth-
methods from the literature. In addition, a new method that has been specially optimi
is presented. Section 5 contains a set of numerical experiments showing the efficacy o
proposed schemes versus other well-known symplectic integrators found in the literatt

2. MAGNUS SERIES FOR NON-AUTONOMOUS SYSTEMS

2.1. Linear Systems

Let us start with the linear systems

d
d—)t‘ — AX  X(0) = Xo, @)

with A(t) € R™". One popular perturbative method for solving (4), while preserving th

gualitative properties of the exact solution, can be obtained through the Magnus expan
[21]. Magnus assumed that the solution can be written in the form

X(t) = exp(L(t))Xo, (%)
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with @ = Y72, Q;. The first two terms are given by

ot 1 t S
Ql(t)=/0 A(sp) ds, 92(0_5/0 dsl/o ds[As), A(S)], (6)

with [A, B] = AB — B A The Magnus expansion has been used mainly in quantum m
chanics as an analytical approximation to the solution (see [2] and references therein)
cause it preserves the unitarity of the propagatoA(i§ skew-Hermitian). Recently, it has
been used as a basis for efficient numerical integrators [5, 14, 22] because the approxil
solution is restricted to the same space as the exact flow, retaining the geometric prope
of the exact solutions. Provided thatt) is a bounded matrix, the series is absolutely con:
vergent for a sufficiently smatl[2, 23] and accurate approximations can be expected fc
sucht; even a moderate number of terms give very accurate approximations. In this case
Magnus series is a good candidate for constructing numerical methods. The main prok
with the series is the evaluation of multidimensional intergrals. It is, however, possible
evaluate all multidimensional integrals using standard unidimensional quadratures der
from collocation principles [14]. For example, using a Gauss—Legendre quadrature v
n points f evaluations ofA(t) per step), it is possible to obtain a nhumerical method o
order 2 in the time step. In order to improve the efficiency and to simplify the method
the Magnus series is written in terms of unidimensional integrals so that the applicatior
guadrature becomes even more transparent [5].

Let us denote by ' (h), i = 0, 1, the unidimensional integrals associated vidit),
h 1 rh2
zOm) = / Zis)ds,  z®h) = H/ sZ(s+h/2)ds, (7)
0 —h/2

whereZ(t) is a function, a vector, or a matrix, depending on the circumstance. The integr
can be approximated using a numerical quadrature to obtain a computational algorithm.
us, as an example, consider the fourth-order Gaussian quadrature for solving (7); then

h h
AN 5(Z1+ Zo) + oM, z%= %(Zz — Z1) + O(h®), (8)

wherez; = Z(ch),i = 1,2, andcy, = 1/2 F /3/6.
When the system is integrated over one time $tetvo fourth-order approximations to
Q (h) are given by
Q(h) = Q1(h) + Q2(h) + O(h?) (9)
= A9+ [AD, AQ] + O(h?). (10)

Higher order methods in terms of unidimensional integrals or Gaussian quadratures
be found in [5, 22].

2.2. Nonlinear Systems

First, we consider the autonomous system

d
di)t( = f(x), Xo = X(0) (12)
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and denote its flow by(t) = ®}xo. Given a smooth functiog : R" — R, the derivative
in the direction off is a new function, whose value & is

d
(Liv)(Xo) = —| ¥ (Pix)

dt|_o
0 0
= fl(X)—w+---+ fn(X)—I/’ : 12)
0X1 0Xn X=Xo
withx = (Xg, ..., Xy) andf = (f1, ..., f,) (see[1, Chap. 8] for more details). We can then
write the differential operatdr as
19
Ls = fi —. 13
f Z i 3Xi ( )

L¢ is usually called the Lie derivative (or operatoassociated witt. Given two functions
Y1 andyr,, it is easy to prove the properties

Li(erys + aoyn) = a1lsn + aolspn, oy, a3 € R, (14)
Li(¥1v2) = vilewa, +yalia, (15)

and by induction we can prove Leibniz’s formula

k

i =Y () (L) (L ve) (16)

i=0

with Ly = Lf(Li(lw) and LYy = v, justifying the name Lie derivative. In addition,
given vector field$ andg,

ails+aolg = Lusfrang
(17)

whereh is another vector field corresponding to the Lie bracket of the vector fielgs,
(f, @), whose components are

n
3gi 3fi
hi=(f,g)i=|—fgi—|-gfi=jz;(fjaxj_gjaxj>~ (18)
Using Lie derivatives, we can write (11) as
dx
a = Lf(X)X, (19)

1 Some authors refer tio; as the Liouville operator, after the transformation of nonlinear ODEs to a linear PD
carrying the same name.
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whereL; acts on each componentxx{remembering that ; acts on functions). With this
notation in place, the flow can formally be written as

dix = exptLix = (Z WL}‘) X, (20)
k=0 "

where exfitLy) is the Lie transform associated withAgain exptLs) acts on each compo-
nent ofx. Given an analytic functiofy and taking into account (14) and (16), it is easy to
prove the following important property for Lie transforms:

expltLi)y (X) = ¥ (exptLix). (21)
Therefore, the composition of two flows can be rewritten in terms of Lie transforms as
DrPGY(X) = ¥ (exp(SLg) exptlix). (22)

Observe that the order of the Lie transforms has been reversed so that the calculations
to be done from left to right. A Lie transform can be considered as a transform of coording
fromxg to X; = exp(tLsx,))Xo. One can see that et x,)) similarly to Ls,, operates on
functions ofxe. It propagates forward in time according to the vector fiékd) [12]. This
point of view has been central in accelerator physics and optics, mainly since the pape
Dragt [11], where the notatiof: is used for the Lie derivativkes. Similarly, in Hamiltonian
perturbation theory, such representations of coordinate transforms have been very frui
Let us consider now the non-autonomous equation

dx

— =f(x,t). 23

gt =0 (23)
The flowx(t) = ®{xo can locally be considered a Lie transform acting on initial conditions
so property (21) is valid fod}. Thusf(x, t) = f(®}xo, t) = ®f(Xo, t) and Eq. (23) can be
written as

d

aq’}Xo = @} Lxo.t)X0; (24)
thus,
d t t
i %= D Lico,t)- (25)

Now, Magnus’s expansion can be used to obtain an approximate solutiapt foi we
considelrb} = eXP(Lww,n), Withw = 3" w;, we obtain for the first two terms (taking into
account (17) and that the position lof is on the right side)

t 1 t S
wl(xO,t):/0 f(Xo, ) ds, Wz(xO,t)=—§/0 dsl/o ds(f(Xo, 1), f(Xo, 2)). (26)

Observe that the sign @f, is changed when compared wii} in (6). Thus, for a time step
t = h we have
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THEOREM2.1. Givenwy, wy, f©@, andf® defined according t626) and (7) and for a
time step & h, the following are fourth-order approximations to the exact solutio(26y:

of = exp(Lw) = exp(Lw, +w,) + O(h®) (27)
= eXp(Lf(O)_‘_(f(O)’f(l))) + O(hs). (28)

Proof. This is similar to the proof in [2, 14]. Let us consider the Taylor expansidn in
of f(Xo, t),

f(Xo, t) = fo + tfy + t2fo + 33+ - - -, (29)
with
19
it at! t=0,x=Xp

Substituting the expansion into the integrals, with a little of algebra, and taking in
account that the expressions are time symmetric, we finavhat O(h?+1) andwyi 1 =
O(h?+3),i > 0, sow=w; + W, + O(h%). In a similar way we find thaft® + (f© D) =
Wi+ Wy + O(h®). m

It is important to bear in mind that a time staf the exact flowd!! is written as the
time-1 flow of the vector fieldv(xg, h).

2.2.1. Hamiltonian Systems

Many important differential equations are Hamiltonian and deserve special attenti
emphasising the qualitative properties of such systems. Even though the general treat
above is still valid, we now present the Hamiltonian version of the same results for the ¢
venience of the reader. Given the Hamiltonian functitf, p, t) : R? x R — R, where

q,p € R' are the coordinates and momenta of the system, the Hamiltonian equations
d oH d JH
i AL AL (30)
dt ap dt aq

By introducing the notatiox = (q, p) = (d1,.--,q, P1,---, p1), (30) can be simplified
to

dx
—_— = L X, 31
dt H(x,t) ( )
whereL y is the Lie derivative associated with the functibn
| |
oH 0 oH 9 oH 0
LH=§j<—————>=§j—Ji,j—, (32)
— \0pi 3G 9G; Ip; G 0% A

with J = (? BI) andl is thel x | identity matrix. This Lie derivative is a particular case
of Ly whenf = —J%—;', and all previous results are valid. It is interesting to mention thz
given two functionsH andG

[Ly, Le] = Lk,

whereK = {H, G} = LgH is the Lie Poisson bracket of functions on phase sjite
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The Magnus approximations (27) and (28) now take the form

N = exp(Lw) = exp(Lw,+w,) + O(h°) (33)
= exp(LHw)HH(m,H(n}) + O(hs), (34)

where

h
Wi (Xo, h)=/ H (Xp, S) ds,
’ (35)

1m s
Watto. ) = =5 [ dsy [ dsiH o0, 50 Hovo. 52
0 0
The Magnus expansion as an analytical approximation for Hamiltonian systems was:

presented in [24]. To illustrate how the Magnus approximation can be used, let us cons
the Hamiltonian

H(g,p,t) =T(p,t) +V(q,1), (36)

which is separable into two easily solvable parts. If we integrate this system for a time s
h using (34), then

HO =TO@) + V@@,
and the integration for a time stéypis equivalent to solving the autonomous Hamiltonian

H@,p) =TOp) + V@ + {TO%p), VP @)} + V@), TP (p)}

for a time stept = 1. The main problem in numerically solving this system using, fol
example, symplectic integrators is that, in general, the Hamiltonian is no longer separ
into easily solvable parts.

Another possibility for solving (36) is to rewrite the Hamiltonian as an autonomot
system with two new coordinates and momenta,

H=(T(pa)+ )+ (V(aa) + p) = Hi+ Ha, 37)

which is separable into two solvable parts, so that the splitting or PRK method (3) can
used. Then one step of the method becomes

(@n, pn) = [ ] exptha Ha(po. #ih)) expthb Hz(do, i h)) (o, Po), (38)

i=1

wherew; = Zij:l aj, B = Zij;%, bj, withbg = 0 andH; = Ly,, H2 = L,. This method
is very easy to use, but unless special attention is paid to the implementation the perform:
can be reduced.
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e The method requiram evaluations of the time-dependent function3 iandV . As we
will see later, the most efficient fourth-order methods have 5. On the other hand, using
Magnus and the Gaussian quadrature only two evaluations are necessary. At the same
if T andV share the same time-dependent functions, only two evaluations are neces
for Magnus versusr using (38).

e Itis important to keep in mind that T is quadratic in momenta, e.d.,= p' M(t)p,
with M e R"™ | itis not possible to use RKN methods when splitting the Hamiltonian as
(37), and thus a less efficient PRK method has to be used.

As we can see, both techniques (Magnus and splitting) have advantages and disac
tages. In the next section, we will show how to construct new numerical methods wh
share the advantages of the previous techniques, i.e., are easy to use and efficiently m
the time-dependent part.

3. FACTORING THE MAGNUS SERIES

Let us assume that et Lo + a2Ltw) is easy to evaluate analytically or numerically.
This is the case, for example, for the Hamiltonian (36) where the prewd8 + o,f
term would be associated to the Hamiltonian

H@ p) = ar(TOP) + VO @) + (TP () + VP (@)
= (1 TOP) + 2TYP) + (VO (@ + VP (@)
=T+ V@, (39)

where a splitting method can be applied.

THEOREM3.1. Given A?, AD O andf® defined according t¢7) and a time step
t=h, the following are fourth-order approximations to the exact solutiongpénd(25),

®h = exp((h)) (40)
= exp(; A 4 2A<1>> exp(iA(O) - 2A<1>> + 0(h) (41)
= exp(AY) exp(A?) exp(—AP) + O(h®), (42)
‘DP = exp(LW(h)) = exp(L§f<0>—2f(1>) eXp('—%f<0>+2f<l)) +0(h%) (43)
= exp(—Lw ) exp(Lso ) exp(Lsw ) + O(h®), (44)

wheref® = fO(xg, h), i =0, 1.

Proof. From the definitions (7) we observe tHt (h) = O(h) and 2™V (h) = O(h?).
Then, using the BCH formulas

exp(X) exp(Y) = eXp<X +Y+ %[x, Y]+ %([x, X, YT+ LY. LY. XID) + - - )
exXpOX) expIY) exp(—X) = exp(Y FIXY] 4 S IX Y] 4+ )

we see that (41) and (42) agree with (10), and (43) and (44) agree with (28) up tdvtrder
respectively. m
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3.1. Time Symmetry
Next, we study if the new methods preserve time symmetry.

DEFINITION. A one-step methody, = O(ty + h, tg, Xo), is time symmetric if it satisfies
Xo = O(ts — h,ts, xp) withts =tg+ h.

In other words, if we integrate an ODE numerically over one dtefollowed by an
integration of the same ODE backwards in time using the same method but with time s
—h, we recover the initial condition. If we use the short notatih) for the method, then
@ is time symmetric if

®~1(h) = ©(=h). (45)

Time symmetry is an important qualitative property of the exact solution, and sometir
it is interesting to preserve it in numerical approximations. This has been shown in case
ODEs with periodic solutions and small perturbations of such. Numerical experiments sk
that time symmetry can be a geometric quality on an equal footing with symplecticity f
Hamiltonian ODE systems. For the methods presented in Theorem 3.1 we have the follov
theorem.

THEOREM3.2. The fourth-order approximation@1)—(44) preserve time symmetry.

Proof. From definition (7) and rewritingZ©@ (h) = h/z ,Z(s+h/2)ds, we have

ZO(=h)=—-29 ),z (—h) = ZzD(h),which |sthesymmetryfoA<'>(h) andf® (xo, h),
i =0, 1. Considering (41), we have

O(— h)_exp< AQ(—h) 4+ 2AD (— h)) exp( AO(—h) — 2A<1>(—h)>
= exp( ;A(O)(h) + 2A<1>(h)) exp( 1A<°>(h) A(l)(h)) = 0"1(h);

hence it is time symmetric. A similar proof holds for (42). However, for the nonlinear ca:
it is not so straightforward. If we consider (43), then

Xp = eXF<L%f(0>(x0,h)—2f(1’(x0,h)) eXp(L%f(o)(xo,h)+2f(1)(x0,h))XO

= W1(Xo), (46)

and we have to prove that, using the same methoxhamith a time step-h, we recover
the initial conditionxp:

O(tr —h, tr, Xn)
= exp('—%f“))(xh,fh)72f<1>(xh,—h)> eXp('—%f(o)(xh,fh)+2f(1)(xh,fh))Xh

= exp(— L 150 (¢ by 210 (xh,h)) exp(— L %f<°>(xh,h)—2f(1)(xh$h)> Xn

= Wr(Xp).
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Taking into account how Lie transforms act and using (46), we have
O(ts —h, tr, Xn) = Wa(Xn)
= exp( L %f‘o)(xo,h)fzf(l)(x(),h)) exp( L %f<°>(x0,h)+2f(1>(x0,h)) W(Xo)
= EXP( L 10 (xp, hy 21 (x(,‘h)) exp(L 10 (xo, ) +2f0 (xo,h)>
X eXp(— L 140 (xg, ) +2f» (xo,h)) eXp(— L 10 (xo, h)—2f® (xo,h)>X0 = Xo,
as we wanted to prove. A similar proof can be used for (44.

3.2. Error Estimation

The fourth-order methods (27), (28), (43), and (44) give different approximations to t
exact solutiorf, and it is interesting to know how the errors depend and its derivatives.
In this section we will give the leading error for each method. The exact solution is giv
formally by x(h) = exp(Lwx,.h)Xo. Considering the Taylor expansion (29), evaluating the
integrals, and using the BCH formula in (43) and (44), we can write all approximatio
asx(h) = exp(Lwm))Xo, Wherew is a vector depending on tligs and their Lie brackets.
Considering thafv = w + O(h®), it follows that the local error is given by

x(h) — X(h) = (exp(Lwexo.n) — €XP(Lwoxo.hy) )Xo
= Lwxo.h)—ixo.n X0 + O(h®)
= (W — W) (Xo) + O(h®), (47)

so the leading error term is given by the veator W evaluated at initial conditions, which
is of orderO(h®). After a few simple algebraic operations, all approximations take the forl

W —W = h®(a1(f1, f2) + aa(fo, (fo, F2)) + aa(f1, (fo, f1)) + aa(fo, (fo, (fo, f1)))) + O(h®),
(48)

where the values af;, a», a3, anday for each method are given in Table I. If a numerical
guadrature is used for evaluating the integrals, then more terms will appear in the lea
error term, depending on the quadrature used.

TABLE |
Coefficients of the Leading Error Term (48) for M4 (Eq. (27)),
M4l (Eq. (28)), 2EX (Eq. (43)), and 3EX (Eq. (44))

(623} (6%} o3 (e 73
1 1 1

M4 O 360 240 720
1 1 1 1

M4l 360 360 240 720
1 1 1 1

2EX 360 360 2160 2880

1 1 1 1

3EX 360 360 1440 720

2Butif, e.g.,(f(x, ty), f(x, t,)) = 0, V14, t,, then all methods give the exact solution.
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It is important to remember that the efficiency of a method depends not only on its er
but also on its computational cost. For the methods considered, the computational co
highly dependent on the problem.

4. SEPARABLE SYSTEMS
Frequently, Eq. (1) is separable into two paftg, t) = fa(x, t) + fg(X, t), such that

S a0t = a0+ pAD 00 (49)
are exactly solvable (or at least easy to evaluate up to the desired order). Thus, each e
nential in the Magnus factorisations (43) and (44) is the sum of exactly solvable terms, :
standard splitting (PRK or RKN) methods can be used.

Considering that the new methods based on Magnus series are of fourth order, we
interested in splitting methods such as (3), of this order of accuracy. In the literature
find a number of methods, many especially tailored for particular structur&sawfd Y.

To avoid the use of different methods for each problem, we will present a new fourth-or
method which works more efficiently for the important case of quadratic kinetic ener
(“RKN” problems) than any other method we found in the literature. In addition, it wil
work as efficiently as the best PRK method we know for the most general casaralY
and will be competitive for other structures assumedcendY.

We have

[ expha X) exphbY) = exph(X + Y)) +h°R+ O(h®), (50)

i=1

whereR constitutes the main error terms. Such a method is completely determined by

vectorsa = (ay, ..., am) andb = (bq, ..., by) and can be considered a PRK method.
Let us study the general case where no special structure is assuméduanhy (the

FLA [free Lie algebra] case). Lét(X, Y) denote the algebra whose elements)Xr¥, and

all elements obtained through the vector space operations of addition and multiplicat

by scalars together with the commutator. The sulhséX, Y) of commutators with five

operators can be represented by the six-dimensional basis

Es.:=[X, [X, [X, X, YIIII,  Ese=I[Y.[Y.[Y,[Y. X]Ill,
E5,2 = [Yv [Xv [X9 [Xs Y]]]] s E5,5 = [Xv [Y» [Ys [Y, X]]]] )
E5,3 = [Xv [Xv [Y9 [Y’ X]]]] ’ E5,4 = [Ya [Y’ [X’ [x’ Y]]]] ;

thus we can writdR = Zle ri Es;i. Itis usual to define the leading error coefficient of (50)
as the Euclidian norm of the vectoe= (11, ..., re); i.€.,€ = 4/> r2. Then, to compare
the efficiency of different methods, one has to consider its cost per step. ImEQ)sually
proportional to the cost of one step, but not always. For example, the second-order leap
method expl} A) exp(B) exp( A) would correspond ten = 2 with a = (1/2, 1/2) and

b = (1, 0), but sinceb, = 0 the last “A-exponential” can be concatenated with the first on
in the next step. Thus, effectively the cost per step is lowered by one function evaluati
This is also the case of all symmetric compositions. In such cases, we will assume that



NON-AUTONOMOUS HAMILTONIAN EQUATIONS 217

cost is proportional ton — 1 instead ofn. This property is usually referred to as first same
as last (or just FSAL). With these assumptions the standard definition for the effective e
is Ef = u&Y4 whereuw = moru = m — 1 accordingly. This is a measure of the accuracy
ash — 0 for nonstiff problems. We will take the method with the smaller effective errc
as the most efficient method. It is important to note that the adjoint composition of (&
(obtained through reversing the order of the exponentials) has exactly the same ordel
error, and therefore we need not consider those cases here.
In the following we consider different structures férandY, and for each case we look

for the most efficient splitting method.

1. RKN. This corresponds to the special case in whiHY, [Y, X]]] = 0. Considering
that nowEss = Esg = 0, a complete description of the leading error term is given b
the vector = (rq, ..., r4). In this caseX andY are qualitatively different and cannot be
interchanged. For example, if in (50) we tadge= 0 we will find methods with different ¢
values than when we considgf = 0. In [27] a nonsymmetric composition with = 5 and
a; = 0 is presented, whose effective error constari is= 0.476. Withm = 4 a method
with E; = 0.509 has been found [17]. Symmetric compositions Wjth= 0 can also be
found in [18] form = 5 andm = 6 with E; = 0.634 andE; = 0.527, respectively. We
found no other symmetric compositions wah= 0, and hence a search for methods with
m = 5 andm = 6 was initiated. In the first case no improved methods were found, whi
form = 6 a new method witltE ; = 0.360 was discovered; let us denote this methof*as
S* is the most efficient method known to us of this type and it is given by the coefficient

a= (0, ay, ag, a4, a3, &), b = (b, by, bs, b, by, by), (51)
with

a; = 0.254 a3 = —0.032290201410934288448a, = 1 — 2(ay + a3),

52)
1 (
b; = 0.084, b, =0.682281125946589406371 bz = 5~ (by + by).
The error coefficients of the method are given by
r =10"° x (—0.82, 2.13, —0.65, —1.28, 23.07, 9.95), (53)

andEf = Mm—1(/r{+--- +rH)¥*=0.360

Observe that for this type of probleihcommutes with Y, [Y, X]] and for many other
problems both operators represent exactly solvable ODEs. It is therefore also inter
ing to consider not only exponentials &f andY but instead of thér’s, C, o =bY +
h2c[Y, [Y, X]] (called a modified potential). If the commutator is not very expensive t
evaluate, such methods can possibly lead to very efficient schemes, and one scheme
type is presented in [15]:

11 121 1
= —, = = -, =, = = —_— . 4
a <07 2’ 2) ) b <6’ 35 6) ) c (07 72’ 0) (5 )

The effective error of the method B = um&Y* = um0.164, whereuw, will depend on
the cost of the modified potentials. It is usual to take into consideration the cost as a hun
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in the intervalum € (1, u + ), wherer is the number of modified potentials appearing
in the scheme. With this criterion we firtel; € (0.327,0.491), and in practice it does not
improve the previous method by much. We have analysed the uni-parametric family
solutions in the case; = ¢3 # 0, obtaining a minimum very close @ = ¢z = 0, with

E+ = um0.156. This improvement is too small to compensate for the presence of ex
modified potentials. The cakg = c3 = 0 gave two solutions, but these solutions also ha
a bigger error constant.

2. Free Lie Algebra (FLA). This corresponds to the general case where no simplificatic
in the algebra is possible. In this case, it seems preferable to consider only symmetric ¢
positions whereX andY are interchangeable. The Ruth—Yoshida method mith 4 given
in [30] hasE; = 1.335. Form = 5 andm = 6 we found two methods witl; = 0.708
and Es = 0.623, respectively [17]. The RKN schen®, being symmetric, turns out to
be by a stroke of luck a fourth-order method also for this case &with= 0.630. This is,
essentially, as efficient as the best method and has the additional property of being
better in the RKN case; so we conclude this paragraph by recommending s€heme

3. RKN2. This corresponds to the casé [Y, [Y, X]]] = [X, [X, [X, Y]]] = 0. We will
taker = (rs, ry) in the definition of the error, becauds;; = Es, = Ess = Esg = 0.
Observe that nowX andY can be considered qualitatively equivalent, and they are inte
changeable. Several families of nonsymmetric methods where the coefficients of (50) sa
therelatiorbn, i = &, i = 1,..., m, are presented in [13]. This symmetry imposes tha
rs = rq, which is a useful property in some cases. For example, in [6] these schemes w
applied to a particular representation of the dmger equation where unitarity was not
exactly preserved (as was the case for other symplectic integrators) but was retaine
higher order than the order of the method becayse r,. The most efficient fourth-order
methods of [13], denoted bym = 4, n = 4) and(m = 6, n = 4), haveE; = 0.342 and
E¢ = 0.322, respectively. On the other hart, hasE; = 0.308 for this problem and is
also here a good candidate for a numerical algorithm.

4. Near-Integrable (NI). This is the case in whichY| « || X| for some norm. It is
therefore natural to optimise the accuracy with this priori information; hence one can c
sider a smaller number of order conditions when constructing the method. Itis now the ¢
that||Es;i|| < |Esall, | =2, ..., 6,andan efficient method will be the one that minimises
the coefficient ofEs ;. For this problem, it is difficult to define a useful effective error
because one has to consitieas well as the size dfY || in the measure. AgairX andY are
qualitatively different and the number of possible methods is higher. For example, in []
we found two symmetric second-order methods (taking 3 anda; = 0 orbs = 0) which
work in practice as fourth-order methods for many problems. One of them is given by (5
takingc, = 0. Even more efficient symmetric fourth-order methods are presented in [1
cancelling the coefficients &s 1, [ X, Es 1], [ X, [X, Es.1]], and [X, [ X, [X, Es1]]], and the
most efficient corresponds to the “(8,BAB’ method. The error coefficients of this method
arer = 107° x (0, 1.08, —44.79, ...), where the coefficients ds , and Es 3 (containing
two B operators) give the main contribution to the overall error. From these coefficier
and comparing with the coefficient & 1 in (53), —0.82 x 10-°, we can see that, unless
Y1 X]/50, the metho&* will be more efficient (the coefficient o¥{, [ X, Es]] in S
is also very small). If| B|| was even smaller it would be sufficient to use the second-ordé
method (54) withc, = 0 because the main contribution to the error would come from th
Magnus approximation.
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In conclusion, we have presented a new method which works very efficiently under m:
assumptions on the vector fields. It is at least as accurate as some methods designe
special vector fields. In our opinion, for most of the problems, it is highly recommended
use only the new method.

One class of very efficient methods includes those based on processing technique
4, 20]. However, in this section we have considered only non-processed methods bec
we are dealing with a time-dependent problexnandY change at each step) and becaus
each step is approximated by two or three different exponentials. The processing techn
would be efficient for our problem only if the evaluation of each exponential in (43) and (4
was split into a relatively large number of substeps, which is the case only for extrem
slowly varying vector fields.

5. NUMERICAL EXAMPLES

In this section we present numerical experiments that highlight the efficiency of t
proposed schemes. First, we study the performance of the new splitting ngtoolied to
several different separable autonomous Hamiltonians, in each of which there exist spec
tailored schemes with which we compare our method. Next, we apply the factored Mag
series to non-autonomous systems to produce autonomous approximations which in
are solved using the new splitting schet@e Finally, we study how the new methods
perform for oscillatory vector fields with different time scales for the frequency of th
time-dependent function.

5.1. Autonomous Systems

In the following, we testS* on four different systems of the types, separable (FLA)
guadratic kinetic energy (RKN), quadratic Hamiltonian (RKN2), and near-integrable (N
We will compareS* with the most efficient schemes in each case accordingly. In particul:
we will consider the following methods:

e FLA: The most efficient fourth-order symmetric method given in [19], denoted b
Sia(triangles joined by lines).

e RKN: The most efficient fourth-order symmetric method given in [19], denoted b
Skkn (squares joined by lines).

e RKN2: The (m = 4, n = 4) scheme presented in [13], denoted &2 (asterisks
joined by lines).

e NI: The schemé8, 4) — B ABpresented in [18], denoted IS¢, (diamonds joined by
lines).

e The new schem&* (circles joined by broken lines).

e The well-known symmetric fourth-order method of Ruth—Yoshida [30] (crosses join
by lines). This is used as a reference method, because it is the best known and has
used in many papers.

We consider four autonomous Hamiltonian systems and use the average error in en
as a measure of accuracy. The interval of integration is not of great importance since
average error in energy is always bounded by constants for all methods and probl
studied.
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FIG. 1. Average relative errors in energy vs number of evaluations for the Hamiltonians suitable for FLA (:
RKN (b), RKN2 (c) and NI (d).

(@) FLA. The Hamiltonian considered is
1 1
H = 3(p"+a°) + S p’d’, (55)

which is separable into two exactly solvable parts with no possible simplification in t
algebra. The initial conditions used dtg p) = (2, 0), and we integrated the system along
the intervak € [0, 20- 2rr]. Taking into account that all symmetric methods considered ar
also fourth-order methods for FLA problems, in Fig. 1a we present the average errol
energy versus the number of function evaluations for different time steps. The numer
experiment agrees very well with the theoretical result from the effective error analysis.

(b) RKN. The simple Hamiltonian associated with the pendulum will be used as a syst
suitable for RKN methods,

1
H= > p? — coqQq). (56)

The initial conditions used aré, p) = (0, 1), and we integrated the system along the
intervalt € [0, 20- 2]. In Fig. 1b we give the average error in energy versus the numb
of function evaluations for several time steps. In this case, the new method clearly sh
its superiority. Observe that it is approximately three orders of magnitude more accur
than the Ruth—Yoshida method at the same computational cost, while it is one orde
magnitude more accurate than the previously most efficient mefad,
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(c) RKN2. The simplest Hamiltonian suitable for RKN2 methods is the harmonic o
cillator H = p?/2 4 g?/2. But, to better understand the interest in RKN2 methods, w
will study a less trivial system. Let us consider the Sdimger equation with the Morse
potential

2

.d
|a'(//(x, t) = (_ZW

+ D@1 - e‘“x)2> v,  ¥(X 0 =yox), (57)
with parameterg. = 1745 au., D = 0.2251 au., ande = 1.1741 au., corresponding to
the HF molecule. As initial conditions we will take the ground state, whose energy
Eo = wo/2 — w3/(16D), wherew = a/2D /i, and we will integrate along the interval
t € [0, 20- 27t /wq)]. We assume that the system is defined in the interval —0.8, 4.32],
and we split this interval inttN\ = 64 parts of lengtmAx = 0.08. Next we considet, =

¥ (Xn, t) wherex, = Xo + nAx,n =1, ..., N, thus obtaining the finite-dimensional linear
equation
. dc
i— = Hc, c(0) = cy, (58)
dt
wherec = (cy,...,cn)T € CN andH =T +V e CV*N. HereV is a diagonal matrix
associated with the potential and with diagonal vaMés ),i =1, ..., N, andT is a full

matrix associated with the kinetic energy. Fast Fourier transforms (F;gjye a way of
evaluatingTc = F~1DtFc, whereDr is diagonal andrc andF—c can be evaluated using
only O(N log(N)) operations. If we define the real vectars= Rec andp = Im c, then
solving (58) is equivalent to solving

il 0) (B 9

which can be considered as the system associated with-tlimmensional Hamiltonian
H = 2p"Hp + 1q"Hg. Evaluating the exponential of (59) is prohibitively expensive, an
one has to look for alternative techniques. Since in this case the Hamiltonian is separ
into two solvable parts, the exponentiation can be done with RKN2 methods.
In Fig. 1c, we present the relative average error in energy versus the number of FFTs
different time steps. The biggest time step taken corresponds to the stability limit of e:
method. Observe the advantagesbfversus the other methods not especially designed fc
RKN2 problems. The good performance of the specially tailored RKN2 method can
explained from the fact that the solutions of (58) and (59) evolve through a unitary &
an orthogonal transform, respectively. The splitting methods used preserve symplect
but not orthogonality for this problem. However, this particular RKN2 method preserv
unitarity to fifth order, as can be seen from the slope of its curve. This method has b
used in [6] in a time-dependent problem. Finally, we have to say that the RKN2 metf
works this efficiently only if one uses the error in energy as a measure of accuracy, wi
the error in position still behaves as predicted by the effective error analysis.

(d) NI. As a Hamiltonian suitable for NI methods we will consider the one used &
Hénon-Heiles,

1 1
H=2(pi+ p§+x2+y2)+(x2y—

3
3y > (60)
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TABLE 1l
Effective Error of the Methods Used in the Numerical Examples

Etra S Et renz 106
FLA 0.623 0.618 0.573 17 4 15.6¢
RKN 0.727 0.527 0.454 .00+ 12.2¢
RKN2 — —_ 0.342 —
NI 0.812 0.799 0.799 00+ 44.8¢
S 0.630 0.360 0.308 824222
Ruth-Roshida 1.335 1.231 1.216 .B0O- 483

Note. E , = n€s, with A =FLA, RKN, RKN2, or NI, © = m for RKN2 andu = m — 1 for the others. In NI
methods we use a different definition for the erfgr = (11/5)* (Ir1] + €+/13 +12) (e ~ | B/ Al}).

We will study the evolution near the origin with initial conditions=y = p, = py =
1/100, where the cubic term can be considered as a small perturbation. In Fig. 1d,
give the average relative error in energy versus the number of evaluafgns.the most
efficient, butSgkn andS* have very similar performance since in both cagésvery small.

To better compare the results obtained in the numerical examples with the results tt
retically expected, we have collected the effective error of the various methods in Table

Before this section concludes, itis important to note that for time-dependent Hamiltonic
of the form H = X(t) + Y(t), the nature of the system might change as time evolve
between the classes Separable, RKN-type, RKN2-type, and Near-integrable. Thus the
splitting method presented is a very natural candidate, which is nearly optimal for all the
cases.

Motivated by the above results, a deep search for symmetric fourth- and sixth-or
metods for FLA and RKN was started, and very efficient methods were obtained [7].
the search for fourth-order methods, taking both symmetric compositionsmand, we
improved the efficiency slightly for FLA and RKN methods separately, but not both togeth

5.2. Non-autonomous Systems

In this section we will consider some Hamiltonians systems which are separable |
(36). The new schemes (43) and (44) take the form

O = exp(Ty + V1) exp(Tz + Vo) + O(h®) (61)
=exp(—-7P = VD) exp(T® + V) exp(T® + V) + O(h®),  (62)

whereT; , = L%T(%Fg-rm, Vio = L%V(O)]szu), 70 = Lta, Yy = Lvo,i =0, 1.Ifweuse
the new splitting methods*, for each exponential in (61), we obtain

Of = exp(by V1) exp@;Tr) explbaVy) - - - exp(@zTy) explbz (V1 + V2) exp(ay T2)
.- exp(ba)Vs) exp(ayTz) exp(by Vo) + O(hd). (63)

If we consider that the last exponential ¢sp,;) can be concatenated with the first ex-
ponential exb; V1) of the next step, then the method requires 10 evaluations ¢¥exqnd
exp(V). Similarly, the scheme (62) requires 15 evaluations of each exponential. Howe\
if the kinetic energy is time-independent, thHefY = 0 and the schems* applied to (62)
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gives

O = exp(bV@ — V) exp(a,T?) exp(b,V @)
- exp(bV @) exp(a;7@) exp(by V@ + VD) + O(h®), (64)

and one step requires only five evaluations of(@ypand exg)’).

ExAMPLE 1 (LINEARLY FORCED POTENTIAL). Let us consider a Hamiltonian with a
linearly forced potential:

1
H(@,p,t) = Zp"p+ V(@) + f(Da. (65)
Considering that

{H(qs pstl)7 H(CL pstZ)} = (f(tl) - f(tZ))p,

itis easy to check that (27), (28), and (44) are equivalent, so we will only consider (43)
(44). As a simple example, we take the forced pendulum,

H= %pz — cog(q) — F cogwt)q, (66)

with F andw constants. This Hamiltonian is one of the most popular non-linear systel
appearing in textbooks because of its simplicity and its richness in qualitative propertie

Atthis point, we are only interested in the error introduced by the approximations (43)
(44), so each of the exponentials will be evaluated up to machine accuracy (with the hel
splitting methods). The integrals will be evaluated both analytically and numerically usi
the fourth-order Gaussian quadrature previously mentioned. WeRakel /10, w = 2
and initial conditiongq, p) = (0, 1) and use measure the average errogirp| along the
intervalt € [0, 5000- 2], using the same time stép= /20 for all methods.

Figure 2a shows the results when the integrals are evaluated analytically: 2EX and :
refer to (43) and (44), respectively. As a reference, we show the results obtained u
the standard fourth-order Runge—Kutta method. Observe that the error of the RK4 met
grows faster since it is not symplectic. Other non-symplectic methods such as stanc
multistep algorithms have the same qualitative behaviour, so they are not considered in
paper. We then approximate the integrals using the fourth-order Gaussian quadrature
(8) (2EXq and 3EXQq). Figure 2b shows the results obtained. We also present the res
obtained, for the same time step, when using $sey and S* methods directly without
using Magnus. Note the improvement in accuracy for 2EX when using quadratures.

Itis important to remember that the efficiency of a method also depends on its compi
tional cost. This point will be considered in the following examples.

EXAMPLE 2. Let us consider the Hamiltonian studied in [8],

k
1 1
H =_p*+2¢° — wj 7
@ p.)=5p*+ 9 +e§c05(q ont), (67)
which describes the motion of a charged particle in a constant magnetic field pertutbed
electrostatic plane waves (propagting along the direction of the motion), each with the s:
wavenumber and amplitude, but with different temporal frequengie$his Hamiltonian
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FIG. 2. Average errors in position vs time for the forced pendulum (66).

can be written as
1 1 .
H@ p.O =3 p® + éqz + £ COSQ)01(t) + £ SiNA) Y1), (68)

with g1 (t) = E:‘:l coqwyt), go(t) = E:‘:l sin(wjt). Observe that, for moderate values of
k, the cost of evaluating one step using a given method will be, essentially, proportio
to the number of evaluations gfi(t) andgy(t), because it is the most costly part of the
Hamiltonian.

We take as initial conditionsjy = 0, pp = 11.2075, and we choose; = i wg, with
wo = 1/10 andk = 10. Figure 3 show the Poin@amappings obtained by plotting points
at discrete times$; = 27 j/wo, with 1000 plotted points. For = 0.25 we see a closed
trajectory and foe = 1.25 we find five closed and very narrow trajectories.

The kinetic energy is time-independent and quadratic in momentum, so it is possible
use RKN methods. We will compare the RKN meth&lgy andS* (five evaluations o,
andg, per step) versus the schemes based on Magnus, (43) and (44), also implemented
S*accordingto (63) and (64). The integrals are approximated using the mentioned Gaus
guadrature (the quadrature gives, essentially, the same result as the analytical solutior

Letus denote bygk, px) = (Q(tk), p(tk)) the points at the Poincarhap. Given a method
and a time steph = 27 /N with N an integer, we obtain a set of pointk(px), and we
defineéd = max{|gx — dk| + |pxk — Pkl : k=1, ..., 100. For each method we choose the
minimum value ol such tha$ < 10-2, and for this value oN we measure the CPU time
in seconds. Table Il shows the results obtained, where the superiority of the methods b:
on Magnus is clear, 2EXq being the most efficient.

ExaMmPLE 3. Let us consider the equation

§=Aq+f(@1t), Qgo=0q(to) eR, (69)

with AT = Ae R f(q,t) = —%V(q, t), and where the dots indicate derivatives respec
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FIG. 3. Poincag€ map of a single trajectory of (68). Initial conditions ai®, po) = (0, 112075,k =
10, wo = 1/10 and (af = 0.25 and (b} = 1.25.

tot. Then forl = 1, this system can be obtained from the Hamiltonian
1+ -1
H = 5P M@®p+ M~ V(. 1), (70)

with M = AM so thatM = exp(tA) and wherep = M~ ¢ and has the form (36). For
| > 1 we can consider the system

a=M(@®p
a
N -1
p =M *aqV(q,tl

A general PRK method applied to (37) requirasvaluations ofM (t) and anothem
evaluations oM ~1(t) at different points. On the other hand a Magnus-based method requi
only two evaluationgvi (t) and M ~(t) at the same points (if using, e.g., the fourth-orde!
Gaussian quadrature).

TABLE llI
Minimum Value of N Such Thaté < 103
=025 e=125
CPU (S) N CPU (S) N
2EXq 4.00 38 7.70 74
3EXq 4.90 58 10.6 121
S 8.50 38 15.6 71
Skn 10.7 48 14.8 68
RK4 12.0 152 26.5 331

Note.The Time Step i1 = 27/N.
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These considerations are very important because, in most of the cases, the cost ©
method will be essentially the cost of the evaluation®/at) andM ~1(t).

If the matrix A is time-dependent, theMl (t) will be the solution of the equatioh =
A(t)M, which can be solved numerically using the Magnus expansion for linear systen

A system of coupled Duffing oscillators is a particular case of (69). Examples of tw
dimensional coupled systems can be found in [25]. For simplicity, we consider the or
dimensional case

§ =e€q+q—qg°+8cogut), (71)

withe = 1074, 8 = 102, w = 1/2, and initial conditiong(0) = 0.0 andq(0) = 1.75. For
solving its Hamiltonian system, we will consider the following:

1. The new factored Magnus method (43), denoted by 2EXq, where the integrals
approximated using the Gaussian quadrature, implemented with the new optimised R
methodS*.

2. The optimal fourth-order PRK metho$;, 4, applied to (70) using the splitting (37).
This would correspond to the solution of (1) using the transformation (2) and having t
inefficiency mentioned in the third point.

3. The Ruth-Yoshida fourth-order PRK method. It is used only as a reference beca
it is a well-known method and has been frequently used.

4. The classical RK method of order 4, RK4. It is used only as a reference.

The time step chosen is normalised so that the computational cost in terms of exe
tion time is the same for all schemes (on the machines we used). Figure 4 clearly sh

ab ]

RK4

log(Error)

-5k 2EX b

-7 1 ’ 1
1 1.5 2 25 3 35

log(Time)

FIG. 4. Relative errors in position vs time at the same computational cost.
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the advantage of handling the time dependency explicitly when solving nonautonom
problems. The computational saving in this problem comes from reducing the numbe
function evaluations in addition to allowing a specialised RKN method to be applied. T
plot shows clearly that the Ruth—Yoshida method has effective error orders of magnit
larger than the most optimised methods, wiglea gives an error approximately two and
a half orders of magnitude larger than the Magnus-based splitting method. For refere
the number of time-dependent function evaluations for the Magnus-based mgthod,
Ruth—Yoshida, and Runge—Kutta is for this example 2, 5, 3, and 2 per step, respectivel

This system has chaotic evolution for the parameters and initial conditions chosen,
the small value ok makes the system close to integrable and the chaotic effect ve
small. This explains the linear error growth observed in the experiment along the intet
studied.

5.3. Performance for Different Time Scales

In this paper we have presented new numerical methods derived from the Magnus se
The error of these methods will come from the Magnus series truncation and from
particular factorisation considered, and it is ultimately dependent on the smoothness ir
variablet of the vector field(x, t). To have a better idea about the performance of the ne
methods in problems with different time scales, we will consider again the forced pendul

H— %pz — cogq) — F coswt), (72)

with F = 1/10, initial conditiongq, p) = (0, 1), and we wil study the error of the methods
forw € [1/10, 100] andt € [0, 100- 2x].

Considering that all methods are of the same order and qualitatively the same e
growth, for each value ofy we will look for the number of evaluations required to reach
a given accuracy. The various methods are all implemented with Gaussian quadratur
integrals using the new splitting method. We will also consider the symmetric RKN meth
Skkn for comparison.

In Fig. 5 we give the number of evaluations agaimsat fixed accuracy 1€ in (g, p).
Figure 5a shows the number of evaluations of the potential plus the number of tin
dependent functions evaluations, a number which is for this example proportional to
CPU time because the cost of the derivative of the potential{((giris similar to one
evaluation of the time-dependent function (@o¥b)).

In Fig. 5b we present the same computation but the cost is given as the number of ti
dependent function evaluations. This picture would be representative of problems where
time-dependent part was the most expensive, as is the case of the two previous autono
systems. The scheme (44) is superior only if evoluation of the potential is expensive
when values of» are around the resonance, but its performance deterioratessasc. If
the time-dependent part is expensive, or the frequency is particularly high or low compa
tothe natural frequency of the autonomous systéims:(0), then (43) with two exponentials
is always the best scheme. In the regior [0, 1/2] the Magnus approximation is very
accurate (in the limito — 0 the system would be autonomous) and the error comes or
from the splitting method used. Thus, if the evaluation of the potential is cheaper tt
evaluating the time-dependent part, it is more efficient to use high-order splitting meth
or to split the time step and to use the fourth-order splitting method repeatedly.
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FIG. 5. Number of evaluations v& for the forced pendulum (72) for the new methods based on Magnu:
(2EXq, 3EXQq) and a standard symplectic integrat(): (a) number of evaluations of the potential plus the time
dependent evaluations (equivalent to the CPU time for this particular problem); (b) number of time depenc
evaluations.

Observe that according to Fig. 5b, 2EXq is approximately seven times faster (for mos
the frequencies) than the standard symple§tigy in case the time-dependent part is the
most expensive to evaluate.

6. CONCLUSIONS

We have presented new numerical integration schemes for ordinary differential eq
tions which evolve on the same solution manifold as the exact solution. These meth
are based on Magnus expansions and can be consideadetric integratorsretain-
ing many of the qualitative properties of the exact solution. To avoid the presence
the troublesome commutators we factor the fourth-order Magnus series as a produc
two and three simple exponentials. Such an approach seems to be attractive for sepa
Hamiltonian systems, where the otherwise present commutators would render the Ha
tonian non separable.

To implement these schemes in an optimal way, we also presented a new fourth-o
symmetric splitting method. This method works more efficiently than other fourth-ord
methods we found in the literature for RKN problems. At the same time, it works nearly
efficiently as the best methods especially designed for general separable problems, li
problems, and near integrable problems.

The numerical experiments show the high performance of the new methods, in partic
when the time-dependent part of the system is expensive to evaluate. The high accu
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obtained comes both from the efficient management of the time-dependent functions, u
the averaging technique, and from the efficiency of the new splitting method.

The good results obtained encouraged us to look for higher order splitting methods
as well as more sophisticated schemes for different types of problems. New methods
evaluating operator exponentials when splitting methods cannot be used or are expel
constitute an important part of the approach presented in this paper, and we hope to re
to this topic at a later point.

Sixth-order methods based on factored Magnus series have also been studied b
authors. They require only three evaluations of the time-dependent functions (if a si
order Gaussian quadrature is used), but a minimum of five exponentials are neces
Furthermore, good sixth-order spliting methods require at least 10 stages [7]; so if e
exponential in the Magnus factorisation is implemented with one of these methods, €
step will involve such a large number of evaluations that they will probably becomes
competitive versus other methods. For this reason, they have not been studied in the
detail as the fourth-order methods and are not presented in this paper.

A very interesting application of the idea presented in this paper is the geometric integ
tion of stochastically perturbed Hamiltonian systems. For such systems the non-autonon
terms are exchanged with random terms [10]. Making sure the appropriate calculus
applied, we were able to construct low-order symplectic methods for such systems. Pre
inary numerical experiments showed that these methods give results which are qualitati
closerto the true solutions, retaining, e.g., certain invariant measures compared to traditi
schemes for stochastic ODES.

ACKNOWLEDGMENTS
We thank the referees for their numerous and constructive comments for improving the presentation of

paper. S. B. acknowledges the Ministerio de Edumagi Cultura (Spain) for a postdoctoral fellowship. The work
of P.C.M. is supported by the Norwegian Research Council through Contract 119089/410.

REFERENCES

=

. V. I. Arnold, Mathematical Methods of Classica-Mechani2sd ed. (Springer-Verlag, New York, 1989).

2. S.Blanes, F. Casas, J. A. Oteo, and J. Ros, Magnus and Fer expansions for matrix differential equations
convergence problend, Phys. A Math. Ger81, 259 (1998).

3. S.Blanes, F. Cases, and J. Ros, Symplectic integrators with processing: A gener&lisiMdy, Sci. Comput.
21,711 (1999).

4. S. Blanes, F. Casas, and J. Ros, Processing symplectic methods for near-integrable Hamiltonian sys
Celest. Mech. Dyn. Astroii0, 17 (2000).

5. S. Blanes, F. Casas, and J. Ros, Improved high order integrators based on Magnus eXand®m34
(2000).

6. S. Blanes and P. C. Moan, Splitting methods for the time-dependerddioter equatiorPhys Lett. 2265
35 (2000).

7. S.Blanes and P. C. Modrractical Symplectic Partitioned Runge—Kutta and Runge—Kutta—Blysttethods
DAMTP Tech. Report 2000/NA13 (University of Cambridge, 2000).

8. J. Candy and W. Rozmus, A symplectic integration algorithm for separable Hamiltonian fun&ti@omput.
Phys 92, 230 (1991).

9. J. R. Cary and J. Doxas, An explicit sympletic integration scheme for plasma simuldti@mnput. Phys

107, 98 (1993).



230 BLANES AND MOAN

10

11.

12.

13.

14.

15.

16.

17.
18.
19.

20.

21.

22.

23.

24.

25.

26.
27.
28.

29
30

. F. Castell and J. Gaines, An efficient approximation method for stochastic differential equations by mear
the exponential Lie seriebJath. Comput. SimulatioB8, 1 (1995).

A. J. Dragt, Lectures on nonlinear orbit dynamic®fysics of High Energy Particle Acceleratpf/dP Conf.
Proc., edited by R. A. Carrigan, F. R. Huson, and M. Month (Am. Inst. of Phys., New York, 1982), Vol. 8
p. 147.

E. Forest, Sixth-order Lie group integratdr€omput. Phy9, 209 (1992).

S. Gray and D. E. Manolopoulos, Symplectic integrators tailored to the time-dependemtiSghréquation,
J. Chem. Physl04, 7099 (1996).

A. Iserles and S. P. Ngrsett, On the solution of linear differential equations in Lie gihifis. Trans. R.
Soc. A357, 983 (1999).

P.-V. Koseleff, Relations among Lie formal series and construction of symplectic integratéyspliad
Algebra, Algebraic Algorithms, and Error-Correcting Codes, AAECCedited by G. Cohen, T Mora, and
O. Moreno (Springer-Verlag, New York, 1993).

C. Leoforestier, R. H. Bisseling, C. Cerjam, M. D. Feit, R. Friesner, A. Guldeberg. A. Hammerich, G. Jolica
W. Karrlein, H.-D. Meyer, N. Plipkin. O. Roncero, and R. Kosloff, A comparison of different propagatior
schemes for the time dependent Schroedinger equdti@gmput. Phy94, 59 (1991).

R. I. McLachlan and P. Atela, The accuracy of symplectic Integratnsinearity5, 541 (1992).
R. I. McLachlan, Composition methods in the presence of small paran®f€35, 258 (1995).

R. I. McLachlan, On the numerical integration of ordinary differential equations by symmetric compositi
methodsSIAM J. Sci. Computl6, 151 (1995).

R. I. McLachlan and S. K. Gray, Optimal stability polynomials for spliting methods, with application to th
time-dependent Schdinger equationAppl. Numer. Math25, 275 (1997).

W. Magnus, On the exponential solution of differential equations for a linear opeCatmmun Pure Appl.
Math. 7, 649 (1954).

P. C. MoanEfficient Approximation of Sturm—Liouville Problem Using Lie-Group Meth8dsMTP Tech.
Report 1998/NA11. University of Cambridge (1998).

P. C. Moan, J. A. Oteo, and J. Ros. On the existence of the exponential solution of linear differential syste
J. Phys. A. Math. Ger82, 5133 (1999).

J. A. Oteo and J. Ros, The Magnus expansion for classical Hamiltonian systehys. A Math. Ger24,
5751 (1991).

S. Paul Raj, S. Rajasekar, and K. Murali, Coexisting chaotic attractors, their basin of attraction and sync
nization of chaos in two coupled Duffing oscillatoPf)ys. Lett. 2264, 283 (1999).

R. Ruth, A canonical integration techniqUeEE Trans. Nucl. ScB0, 2669 (1983).
J. M. Sanz-Serna and M. P. Calidymerical Hamiltonian Problem@hapman & Hall, London, 1994).

M. Suzuki, Fractal decomposition of exponential operators with applications to many-body theories and M
Carlo simulationsPhys. Lett. AL46, 319 (1990).

. J. Wisdom and M. Holman, Symplectic maps for libody problemAstron. J.102, 1528 (1991).
. H. Yoshida, Construction of higher order symplectic integrafeings. Lett. AL50, 262 (1990).



	1. INTRODUCTION
	2. MAGNUS SERIES FOR NON-AUTONOMOUS SYSTEMS
	3. FACTORING THE MAGNUS SERIES
	TABLE I

	4. SEPARABLE SYSTEMS
	5. NUMERICAL EXAMPLES
	FIG. 1.
	TABLE II
	FIG. 2.
	FIG. 3.
	TABLE III
	FIG. 4.
	FIG. 5.

	6. CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

